
© BME-MIT 2017 1.

Software Verification and Validation

VIMIMA11 Design and integration of embedded
systems

Balázs Scherer

© BME-MIT 2017 2.

 Error: Human operation that leads to an
undersigned behavior.

 Fault: The Error’s occurrence in the code, many
times called bug. Executing this code part leads to
Failure

 Failure: Aanomalous behavior of the software

Software failures

© BME-MIT 2017 3.

Importance of the verification

© BME-MIT 2017 4.

ISTQB: International Software Testing
Qualifications Board

© BME-MIT 2017 5.

 Testing shows presence of defects: Testing can show
that defects are present, but cannot prove that there are
no defects. Testing reduces the probability of undiscovered
defects remaining in the software but, even if no defects
are found it is not a proof of correctness.

 Exhaustive testing is impossible: Testing everything
(all combinations of is impossible inputs and preconditions)
is not feasible except for trivial cases. Instead of exhaustive
testing, we use risks and priorities to focus testing efforts.

 Early testing: Testing activities should start as early as
possible in the software or system development life cycle
and should be focused on defined objectives.

Fundamentals of testing

© BME-MIT 2017 6.

 Defect clustering: A small number of modules contain
most of the defects discovered during prerelease testing or
show the most operational failures.

 Pesticide paradox: If the same tests are repeated over
and over again, eventually the same set of test cases will
no longer find any new bugs. To overcome this 'pesticide
paradox', the test cases need to be regularly reviewed and
revised, and new and different tests need to be written to
exercise different parts of the software or system to
potentially find more defects.

 Testing is context dependent: Testing is done
differently in different contexts. For example, safety-critical
software is tested differently from an e-commerce site.

Fundamentals of testing

© BME-MIT 2017 7.

 Absence-of-errors fallacy: Finding and fixing defects
does not help if the system built is unusable and does not
fulfill the users' needs and expectations.

Fundamentals of testing

© BME-MIT 2017 8.

Testing life cycle

© BME-MIT 2017 9.

Test planning and control

 Determine the scope and risks and identify
the objectives of testing
o What software, components, systems or other

products are in scope for testing
o Are we testing primarily to uncover defects, to

show that the software meets requirements, to
demonstrate that the system is fit for purpose or
to measure the qualities and attributes of the
software?

 Determine the test approach
o Test techniques to use
o Coverage to achieve

 Implement the test policy and/or the test
strategy

 Determine the required test resources

© BME-MIT 2017 10.

Test planning and control

 Schedule test analysis and design tasks, test
implementation, execution and evaluation

 Determine the exit criteria: The testing do not
last for exhaustion. There is a need for a well
determined exit criteria, a coverage metric to
achieve.

 Measure and analyze the results of reviews
and testing

 Monitor and document progress, test
coverage and exit criteria

 Provide information on testing
 Initiate corrective actions

© BME-MIT 2017 11.

Test analysis and design
 Review the test basis

o product risk analysis, requirements, architecture, design
specifications, and interfaces

 Identify test conditions based on analysis of test
items, their specifications and behavior
 high-level list of what we are interested in testing

 Design the tests
 Selecting test methods based on test conditions

 Evaluate testability of the requirements and system
 The requirements may be written in a way that allows a

tester to design tests; for example, if the per formance of
the software is important, that should be specified in a
testable way

 Design the test environment set-up and identify any
required infrastructure and tools.

© BME-MIT 2017 12.

Test implementation and execution
 take the test conditions and make them into test

cases
 Put together a high-level design for our tests
 Setup test environment
 Develop and prioritize test cases
 Create test suites from the test cases for efficient

test execution: A test suite is a logical collection of test
cases which naturally work together. Test suites often share
data and a common high-level set of objectives.

 Implement and verify the environment
 Execute the test suites and individual test cases
 Log the outcome of test execution
 Compare actual results to expected results
 Analyze differences and repeat testing

© BME-MIT 2017 13.

Test implementation and execution
 take the test conditions and make them into test

cases
 Put together a high-level design for our tests
 Setup test environment
 Develop and prioritize test cases
 Create test suites from the test cases for efficient

test execution: A test suite is a logical collection of test
cases which naturally work together. Test suites often share
data and a common high-level set of objectives.

 Implement and verify the environment
 Execute the test suites and individual test cases
 Log the outcome of test execution
 Compare actual results to expected results
 Analyze differences and repeat testing

© BME-MIT 2017 14.

Evaluating exit criteria, reporting, and test
closure

 Comparing test results to exit criteria
 Assess if more tests are needed or if the exit criteria

specified should be changed
 Write a Test summary report

 Finalize and archive testware, such as scripts, the test
environment, and any other test infrastructure, for
later reuse.

 Evaluate how the testing went and analyze lessons
learned for future releases and projects.

© BME-MIT 2017 15.

 Can the developer test its own software or
system?

- hard to find the problem in our work (do not
understand well the specification)

- Do not test everything (not expert at test methods,
forget for example negative tests)

+ No one knows the software or system better

 Why testing independence is requires
+ independent: different point of view, can see problems

invisible for the developer

+ knows testing methods

+ required by standards

- Less knowhow about the system

Who should perform the tests?

© BME-MIT 2017 16.

Verification and test techniques

© BME-MIT 2017 17.

Static verification methods

Requirement analysis
Logical design

Technical System
design

Subsystem design

Module design

Implementation

Modul test

Subsystem
Integration

and test

System Int.
& test

User acceptance
test

Modul level

Subsystem
level

System level

 Do not requires an executable code
o Can be used in early phases

© BME-MIT 2017 18.

Static verification methods

Requirement analysis
Logical design

Technical System
design

Subsystem design

Module design

Implementation

Modul test

Subsystem
Integration

and test

System Int.
& test

User acceptance
test

Modul level

Subsystem
level

System level

 Do not requires an executable code
o Can be used in early phases

© BME-MIT 2017 19.

Importance of the verification

© BME-MIT 2017 20.

Static verification: Reviews

 Informal review
o No formal process
o Pair, or technical lead review, code or design
o Results may be documented
o Usefulness depends on the reviewer
o Inexpensive way to get some benefits

 Walkthrough
o Meeting led by the author to the peer group
o May take the forms of scenarios or dry runs
o Open ended meeting, with optional preparations
o My vary in practice from quite informal to very formal
o Main purpose is learning, and gaining understanding, and

finding defects

© BME-MIT 2017 21.

Static verification: Reviews

 Technical review
o Documented, defined defect detection process
o Peers and technical experts are present
o Typically lead by a trained moderator
o There is pre-meeting preparations
o Optionally use checklists
o Review report is created
o Main purpose is discussing, making decisions, solving technical

problems, checking conformance to specification, plans, and standards

 Inspections
o Lead by trained moderator
o Detailed roles, formal process with checklists
o Specified entry and exit criteria
o Formal follow up process
o Purpose is finding defects

© BME-MIT 2017 22.

Static verification: static analyzers

 Checking against the coding rules
o MISRA-C compatibility analysis

 Code metrics
o The 20% of code case the 80% of the problems
o Cyclomatic complexity analysis and calculations
o Comment ratio

 Data flow verification
o Are there usage of non initialized variables?
o Are there variable under, or overflows, are the a dividing

with 0?

 Control flow analysis
o Are there unreachable code lines

© BME-MIT 2017 23.

Cyclomatic complexity
 Gives information about the complexity of the code.

Useful to identify problematic software parts, and to
estimate the required testing effort.

M = E − N + 2 E: Edges of the graph N: Nodes in the graphs

8-7+2 = 3

© BME-MIT 2017 24.

Static analysis tool example: PolySpace

 Software of MathWorks
 Can be used for C/C++ and Ada languages

 Checking compliance with MISRA-C rules
 Uses abstract interpretation to discover Run-Time

problems
o Array over indexing
o Errors in pointer usage
o Using non initialized variables
o Usage of bad arithmetical operations (divide with 0, square root

from negative number)
o Over or under flow of variables
o Not allowed type conversions
o Unreachable code, endless loops

© BME-MIT 2017 25.

PolySpace in operation

 Green:
reliable, good code

 Red:
faulty in every
circumstances

 Grey:
unreachable code

 Orange:
unproven to be
good or bad, need to
be checked by the
programmer

Static verification:

© BME-MIT 2017 26.

Dynamic verification techniques
 An executable code is needed for these methods: Testing

Requirement analysis
Logical design

Technical System
design

Subsystem design

Module design

Implementation

Modul test

Subsystem
Integration

and test

System Int.
& test

User acceptance
test

Modul level

Subsystem
level

System level

© BME-MIT 2017 27.

Dynamic verification techniques
 An executable code is needed for these methods: Testing

Requirement analysis
Logical design

Technical System
design

Subsystem design

Module design

Implementation

Modul test

Subsystem
Integration

and test

System Int.
& test

User acceptance
test

Modul level

Subsystem
level

System level

© BME-MIT 2017 28.

Dynamic methods

© BME-MIT 2017 29.

Test types
 Functional tests

o Usually black box tests
o Based on specifications

 Non functional tests
o Maintainability, usability, reliability, efficiency
o Performance, Load, Stress test

 Structure based tests
o White box tests
o Coverage based tests

 Software change tests
o Confirmation test: test after bug fixing. Ensuring the bug fix

is done well
o Regression test: test after minor software change to ensure

the change not affected the main functionality

© BME-MIT 2017 30.

White box, Grey box, and Black box tests
 White box test

o The source code is known, and used during the test
o Typically structure based test
o Used mainly at the bottom part of V-model

 Black box tests
o The internal behavior of the system is not known, the test is focus on the

inputs and the outputs
o Typically specification based test
o Used during the whole verification & validation part of the V-model

 Grey box tests
o Focus on the inputs and outputs
o The internal structure, source code is not known, but there are

information about the critical internal states of the system
o Typically used in case embedded systems during integration

© BME-MIT 2017 31.

Specification based techniques
 The specification and requirements of the software or

system to test is given. The goal is to create test data
that is able to assure that the system or software
meets its specification and requirements, in an
efficient way.

 Techniques
o equivalence partitioning
o boundary value analysis;
o decision tables;
o state transition testing

© BME-MIT 2017 32.

Equivalence partitioning
 Goal: Identify Equivalence Classes

o divide (i.e. to partition) a set of test conditions into groups
or sets that can be considered the same (i.e. the system
should handle them equivalently), hence 'equivalence
partitioning

o we are assuming that all the conditions in one partition will
be treated in the same way by the software

o equivalence-partitioning technique then requires that we
need test only one condition from each partition

o Wrong identification of partitions can cause problems

 Typical partitions or classes
o Value ranges
o Value sets
o Special clasters

© BME-MIT 2017 33.

Equivalence partitioning examples
 Examples

o Simple value ranges

o Complex variable sets

0 100 200 255

validinvalid invalid

© BME-MIT 2017 34.

Equivalence partitioning examples
 Examples

o Simple value ranges

o Complex variable sets

0 100 200 255

validinvalid invalid

© BME-MIT 2017 35.

Equivalence partitioning examples
 Up switching characteristic of an automatic

transmission controller

© BME-MIT 2017 36.

Boundary value analysis
 Defects like to hide in the partition boundaries

o Wrong decision conditions
o Wrong iteration exit or enter criteria
o Wrong data structure handling

 Test both boundary of a cluster or partition

0 100 200 255

validinvalid invalid

© BME-MIT 2017 37.

In a real case it can be far from trivial
 Up switching characteristic of an automatic

transmission controller

© BME-MIT 2017 38.

Why should we both perform equivalence
and boundary tests?

 Do we cover the whole partition by an boundary value
test?

© BME-MIT 2017 39.

Why should we both perform equivalence
and boundary tests?

 Do we cover the whole partition by an boundary value
test?
o Theoretically yes. It can work in an ideal world.

o If the boundary value test signals a defect: is the whole
partition works wrong, or just the boundary is not good?
o must test some values inside the equivalence partition

o Testing only extreme situations give less confidence,
o must test some values inside the equivalence partition

o Sometimes it is extremely hard to find the boundaries
o Sometimes there can be a wrong partitioning

© BME-MIT 2017 40.

Cause-effect analysis, decision table
 Analyzing input relationship to output

o Cause: an input partition
o Effect: an output partition
o Using bool algebra to this

 speed > 50km/h
 Gas pedal < 30%

 Bool-graph
o AND, OR relationships
o Denied combinations

 Decision table
o One column is one test case

© BME-MIT 2017 41.

Cause-effect analysis, Example
 Webshop discount analysis for a customer

© BME-MIT 2017 42.

State transition testing

 Using the state diagram
 Test goals:

o the states that the software
may occupy

o the transitions from one state
to another

o the events that cause a
transition

o the actions that result from a
transition

o Testing for invalid transitions

© BME-MIT 2017 43.

Use case testing

 Typically used at the final stage of integration as
system tests

 Test scenarios generated from user stories

© BME-MIT 2017 44.

Structure based tests

© BME-MIT 2017 45.

Structure based methods
 White box methods

o Requires the execution of code

 Gives easy to understand measurement values
 Alone it is not a test
 Do not protect against malfunction

 Methods
o Statement coverage
o Decision coverage
o Condition coverage
o Path coverage

© BME-MIT 2017 46.

Terms
 Statement: one C language statement
 Statement Block

o Continuous series of statements. Without branch, or
decision.

 Condition
o Simple logical condition (AND, OR …)

 Decision
o Decision based on one or more logical conditions

 Branch
o A possible outcome of a Decision

 Path
o Series of statements between the modules input and the

output

© BME-MIT 2017 47.

What do structure based methods
good for?

 Typical application it to determine end of test
condition.

Specification

Tests
Software

Érvényes felhasználói név T T T F

Érvényes login T T F -
Engedélyezet hozzáférési mód T F - -
Hibatároló kiolvasás T T F F

Hibatároló törlés T F F F
Szoftver frissíés T F F F

Minimum test case-ek A B C D

Do we tested enough?

© BME-MIT 2017 48.

What do structure based methods
good for?

 Typical application it to determine end of test
condition.

Specification

Tests
Software

Érvényes felhasználói név T T T F

Érvényes login T T F -
Engedélyezet hozzáférési mód T F - -
Hibatároló kiolvasás T T F F

Hibatároló törlés T F F F
Szoftver frissíés T F F F

Minimum test case-ek A B C D

Do we tested enough?

Növekvő
fedettség

© BME-MIT 2017 49.

Statement coverage

 Definition:

Not a strong metric

100% of
Statement
Coverage

67% of
Statement
Coverage

Number of statements exercised

Total number of statements
* 100%Statement coverage =

© BME-MIT 2017 50.

Decision coverage

50% of
Decision coverage

((a == b) || (c > 5))

 Definition:

Rather strong metric

Number of decision outcomes exercised

Total number of decision outcomes
* 100%Decision coverage =

© BME-MIT 2017 51.

Multiple Condition Coverage

 Definition:
o Every possible condition combination will be tested
o There is a huge grow in the test cases

1. test: a = 5 (T), b = 0 (F)
2. test: a = 12 (F), b = 10 (T)
3. test: a = 15 (F), b = 2 (F)
4. test: a = 6 (T), b = 8 (T)

100% of
Multiple Condition Coverage

((a < 10) || (b > 5))

© BME-MIT 2017 52.

MC/DC coverage

 Definition:
o Each entry and exit point is invoked
o Each decision takes every possible outcome
o Each condition in a decision takes every possible outcome
o Each condition in a decision is shown to independently affect the

outcome of the decision

1. test: a = 5 (T), b = 0 (F)
2. test: a = 12 (F), b = 10 (T)
3. test: a = 15 (F), b = 2 (F)

100% of
MC/DC coverage

((a < 10) || (b > 5))

© BME-MIT 2017 53.

Path coverage

67% of
Path coverage

 Definition:

Too strong metric

Number of executed path

Total number of possible path
* 100%Path Coverage =

© BME-MIT 2017 54.

Non systematic tests
 Ad-hoc trial and error

 Error guessing
o Executed after normal tests
o There are no rules for error guessing
o Typical conditions to try include division by zero, blank (or

no) input, empty files and the wrong kind of data

 User testing
o Acceptance tests made by the end users
o Based on the usage scenarios

© BME-MIT 2017 55.

Dynamic test techniques in V-model
 Application of the methods above

Requirement analysis
Logical design

Technical System
design

Subsystem design

Module design

Implementation

Modul test

Subsystem
Integration

and test

System Int.
& test

User acceptance
test

Modul level

Subsystem
level

System level

© BME-MIT 2017 56.

Software Component Testing

Source code

Tested
software

components

Test cases from
the design path

Testing software components

Verification of
data model

Verification of
behavior model

Verification of
Real-time model

Test cases from
the implementation

The output of the
specification based

tests

The output of the
Implementation

related tests

Connection to
the design

process

Connection to
the design

process

© BME-MIT 2017 57.

Module testing
 Goal is to find the problems as early as possible

o Typically done by the developer

 Every module is handled separately
o Low complexity tests
o Easy to localize the problem

 Easier to integrate individually tested modules
o Way to handle the complexity

 Module tests can be automated
o Should be executed many times, therefore it should be fast

and easy to execute

© BME-MIT 2017 58.

Typical problems of module testing
 The modules should be tested as separate component,

but it depends on other modules
o Isolation

K

K1 K2

K21 K22 K23

UUT: Unit Under Test

© BME-MIT 2017 59.

Typical problems of module testing
 The modules should be tested as separate component,

but it depends on other modules
o Isolation

K

K1 K2

K21 K22 K23

Test stub

Test executer

UUT

© BME-MIT 2017 60.

Typical problems of module testing
 The modules should be tested as separate component,

but it depends on other modules
o Isolation

 Many times not executed in the real hardware: emulation

K

K1 K2

K21 K22 K23

Test stub

Test executer

UUT

© BME-MIT 2017 61.

Requirements for unit tests in automotive

© BME-MIT 2017 62.

Tools of specification based tests
 xUnit, cUnit, Unity: Easy libraries for automated unit

tests

 Using simple assertions:
CU_ASSERT_TRUE(a), CU_ASSERT_EQUAL(a, b);

cunit.lib

uut.c

uutTests.c

Compiler uutTest.exe

Reports

© BME-MIT 2017 63.

Tools of structure based tests

 Software based tools

o Code instrumentation
• Overhead: time, data and programmemory

o We test code with instrumentation. If we remove the
instrumentation, then that is not the code we tested.

© BME-MIT 2017 64.

Tools of structure based tests

 Software based tools

o Code instrumentation
• Overhead: time, data and programmemory

o We test code with instrumentation. If we remove the
instrumentation, then that is not the code we tested.

 Running the code in an Emulator

o There is no need for code instrumentation

o Not exactly the same environment as the real one
• Peripheral handling, timing

o Using the debugger

© BME-MIT 2017 65.

Tools of structure based tests

 Hardware based measurement

o Monitoring memory data and address lines
• On chip memories of modern microcontrollers do not make it

possible

o Internal microcontroller dependent support needed
• Trace modules

• ARM Embedded trace module

o Costly hardware interface

© BME-MIT 2017 66.

Instrumentation tool: GCOV

 Part of the GCC toolchain, can be ported to embedded
systems

 Instruments the code and creates logfiles

#include <stdio.h>

int main (void)

{

1 int i;

10 for (i = 1; i < 10; i++)

{

9 if (i % 3 == 0)

3 printf ("%d is divisible by 3\n", i);

9 if (i % 11 == 0)

printf ("%d is divisible by 11\n", i);

9 }

1 return 0;

1 }

© BME-MIT 2017 67.

Hardware measurement based tool

 Hardveres coverage tool

© BME-MIT 2017 68.

Questions about condition coverage

 Example code: if ((a == 10) && (b == 20))

 How can we measure condition coverage???

if
statement

then branch
instructions

Instructions

true

false

© BME-MIT 2017 69.

Questions about condition coverage

 Example code: if ((a == 10) && (b == 20))

if
statement

then branch

Statements
after, if

true

false
If statement
#1 condition

then branch

Statements
after, if

false
true

If statement
#2 condition

truefalse

Basic Blokkokras

© BME-MIT 2017 70.

Real-time model checking

 Shedulability
calculation

 What information do
we need?

 It is enough to
measure the response
time?

© BME-MIT 2017 71.

Response time van be tricky

 Execution time which is important

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Response time (run time)

Execution time

Respone / Execution time
[ms]

System time
[us]

3.6 3.8 4 4.2 4.4 4.6 4.8 5

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Response time (run time)

Execution time

System time
[us]

Respone / Execution time
[ms]

© BME-MIT 2017 72.

Execution time is needed for shedulability
calculations

 DMA: Deadline Monotonic analysis

 How to measure execution time?

© BME-MIT 2017 73.

RTOS Trace hooks

 For example FreeRTOS has such hooks

Saving old

Tasks context

Task context switch

Starting the new task

Event starting task

switch

traceTask_Switched_Out
macro

traceTask_Switched_In
macro

© BME-MIT 2017 74.

DWT: Data Watchpoint Trace
 4 comparator: data address / program counter

o Hardware watchpoint: put the processor into debug state
o ETM trigger: start trace packest
o PC sample trigger
o Data address sample trigger

 Counters
o Clock cycle counter
o Sleep cycle counter
o Interrupt overhead counter

 PC sampling
 Interrupt trace

© BME-MIT 2017 75.

Integration tests
 Application of the methods above

Requirement analysis
Logical design

Technical System
design

Subsystem design

Module design

Implementation

Modul test

Subsystem
Integration

and test

System Int.
& test

User acceptance
test

Modul level

Subsystem
level

System level

© BME-MIT 2017 76.

Szoftver komponensek
specifikációja

Szoftver komponensek
specifikációja

Description
files

Specification
of software
architecture

Integration of software components

Creating the data and
Code version of the

software

Generating
documentation

Creating
Description

files

Specification
of software
components

Integrated
software

Software
documentation

Szoftver komponensek
specifikációja

Szoftver komponensek
specifikációja

Implementation
of software
components

Software integration

Connection to
the design

process

© BME-MIT 2017 77.

Integration methods: Big-bang

 Big-bang
o Integration of all the tested components
o Harder to find the problems
o Confirmation testing after bug fixing requires more

effort
o Can be effective in case of small systems

© BME-MIT 2017 78.

Incremental integration

 Baseline 0: 1 tested components…

 Baseline 1: 2 tested components …

 Baseline 2: 3 tested components …

 Benefits

o Easier to localize the problems

o Easier to recover after problems

© BME-MIT 2017 79.

Top-down integration

 From top to bottom

 There is a need for test stubs
o Simple printf

o Time delays

o Simple calculation based
response

o Response from a table

 Benefits
o The higher level functionality is

tested first

 Drawbacks
o There is a need for test stubs

o The details are tested late

o The result is just a simulation for
very long time

K

K1 K2

K21 K22 K23

Test stub

B1

Baseline 0

B2

© BME-MIT 2017 80.

Bottom-up integration

 Start from bottom, to up

 Benefits
o Good for hardware intensive

systems

o We have real data and real
timing from the start

 Drawbacks
o High level functions are tested

at the end

o There is a need for test drivers,
and stubs

K

K1 K2

K21 K22

Test stubs

B1

Baseline 0 B2

B3

© BME-MIT 2017 81.

Functional integration

 Function by function
integration

 Benefits
o The highest abstraction level is

tested many times

o Having real responses early

o Real working functionality very
early

 Drawbacks
o Many test stubs needed

K

K1 K2

K21 K22

Test stubs

B0

B1

B2

© BME-MIT 2017 82.

Tested software
system

Testing software system

Testing integrated
Software systems

Verification of software
states

Verification of
Real-time model

Test cases from
specification

Test results

Software system

Testing software systems

Connection to
the design

process

Connection to
the design

process

© BME-MIT 2017 83.

Typically used integration tests

 Specification based techniques
o equivalence partitioning
o boundary value analysis
o decision tables
o state transition testing

 No functional tests
o Performance and load tests
o Load tests
o Usability tests

© BME-MIT 2017 84.

Continuous integration

 After Commit
o Automatic sending for review
o Automatic build
o Automatic unit test

 Jenkins
 Gerrit

© BME-MIT 2017 85.

Continuous integration

© BME-MIT 2017 86.

System integration testing

VIMIMA11 Design and integration of embedded
systems

Balázs Scherer

© BME-MIT 2017 87.

Tested
system

System integration testing
Communication

Interfaces
Distributed
operation

Real-time
behavior

Test cases from
specification

Test results

Software
system

Control loop
verification

Safety system
verification

System integration testing

Connection to
the design

process

Connection to
the design

process
Hardware

system

© BME-MIT 2017 88.

System integration test requirements
ISO26262

© BME-MIT 2017 89.

MIL, SIL, HIL, Test cells in V-modell

Source ni.com

© BME-MIT 2017 90.

Importance of early testing

© BME-MIT 2017 91.

Model-In-the-Loop teszt

 Main functions can be tested very early
o Simulink, LabVIEW

Control system
model

Environment
model

PC

© BME-MIT 2017 92.

MIL (Model In the Loop) test

 Benefits
o The main functions are tested very early
o Domain specific languages are used: Simulink,

LabVIEW
o Very fast testing possibility

 Drawbacks
o Details can be tested: real-time behavior,

architecture dependency

© BME-MIT 2017 93.

Software-In-the-Loop tests

 Software generated from model
o Code generation problems, and data precision errors can be

found

Control
Software

Environment
model

PC

© BME-MIT 2017 94.

Software-In-the-Loop tests

 Benefits
o Code generation can be verified
o Data precision can be verified

 Drawbacks
o Code do not use the same processor as in the real

system:
o Real-time problems can not be verified
o Real peripheral problems can not be verified

© BME-MIT 2017 95.

Processor-In-the-Loop test

 Real processor is used, with real peripherals

Control
Software
Control

Software

Environment
model

© BME-MIT 2017 96.

Processor-In-the-Loop test

 Benefits
o Real-time behavior
o Real arithmetic, and peripherals

 Drawbacks
o Many hardware functions are still simulated

© BME-MIT 2017 97.

Hardware-In-the-Loop test

 Real hardware (ECU) is used

Environment
model

Control
Software
Control

Software

© BME-MIT 2017 98.

Hardware-In-the-Loop test

 Benefits
o Real-time behavior
o Real arithmetic, and peripherals
o Repeatable tests
o Safety critical situation can be examined without

causing a problem

 Drawbacks
o The environmental model should be very accurate

© BME-MIT 2017 99.

Hardware-In-The-Loop test environments

© BME-MIT 2017 100.

A typical HIL test architectre

Real Time Environment simulator

Test Control

Logs

Test configuration
and control

Test
profiles

Hardware
I/O Environment

model

Test
execution

Tester

Device Under
Test

Global variables

Diagnostic
communication

 Interfacing
o Digital I/O

o Analog I/O

o Communication
lines

 Extended
information
o Diagnostic

communication

© BME-MIT 2017 101.

NI VeriStand

 Widespread HIL test
development environment

 Many supported HW for
traditional measurements

 Many possible model
representation mode

 Real-Time operation is possible

 Extendable, with custom
functions

© BME-MIT 2017 102.

Maturity phase, long term tests

 Long term tests
o Parallel to many devices: 5-100 pcs. accelerated

lifetime simulation tests
o N x 1000 hours of testing: continuous control and

logging is needed
o Typically Climate chamber, shock pads, shake pads

included
o There is no need for complex environmental

simulation

o Requires automated tests

© BME-MIT 2017 103.

Development environments for test
automation

 Able to build a test sequence from test steps
o Cycles, if, case conditions can be used

 Parameters and Limit values are configurable
for test steps
o Typically read from a file

 Supports parallel testing
o Typically many devices tested together

© BME-MIT 2017 104.

NI-TestStand

 TestStand properties
o Creating LabVIEW,

C#, or Phyton based
test steps

o Assigning limits and
parameters to test
steps

o Controlling test
sequences

o Creating reports
after test

TestStand sequence

Main

Setup

Cleanup

Step

Step

Step

Step

Step

Step

Sequence call

Subsequence

Setup

Main

Cleanup

Step

Step

Step

© BME-MIT 2017 105.

NI-TestStand user interface

© BME-MIT 2017 106.

Tested
System

User acceptance test

Test cases from
specification

Test
Results

Integrated
systemUse Cases

User acceptance tests

Connection to
the design

process

Connection to
the design

process

© BME-MIT 2017 107.

User acceptance testing

 Involving the end-user to the testing
o The end-user knows what is really needed
o Different point of view

 Alfa test
o At the developers site involving the end-user

 Beta test
o At the real environment

80% of the code, 20% of the functionality

80% of the functionality, but 20% of the code

System tests

User acceptance tests

© BME-MIT 2017 108.

Manufacturing tests

 Very similar to a simplified environment test
o Executing a test sequence
o Parallel execution is needed

 Many device need to be tested in a small period
of time
o Verification of the manufacturing not the design
o Only the main functionality is tested

© BME-MIT 2017 109.

Manufacturing tests
 Bed of nails tester

o In-Circuit-Test point in the PCB

 Very simplified environmental
tests if any
o Main functions is tested only
o Many times special test software is

downloaded to the UUT

 Vision based tests
o Verifying the manufacturing,

component placement and
soldering

