
© BME-MIT 2017 1.

Software Design Path

VIMIMA11 Design and integration of embedded
systems

Balázs Scherer

© BME-MIT 2017 2.

Branching to subsystem paths – Electronics
(Hardware – Software) path

System Design,
Technical System specification

System design

Mechanical
Subsystem

Design

Module
designComponent

level

Subsystem Level

System level

Hardware
Subsystem

Design

Software
Subsystem

Design

Module
design

Implementacion

© BME-MIT 2017 3.

Analyzing of Software Requirements

Software
Requirements

Software – Hardware
interface

Software
architecture

Test results

Test cases

Verification &
Validation

Specification of software architecture

Specification of
Software components

and interfaces

Software architecture

Verification &
Validation

© BME-MIT 2017 4.

Determining software components and
interfaces

Class: Measurement device

Attrimutes:
- Measured variable tables
- Sensors list
- Calibration tables

Methods:
- Measure
- Callibrate
- Send measurements

Class: Sensor

Attrimutes:
- Sensor limits
- Sensor calibration parameters
- Sensor value

Methods:
- Measure
- Callibrate
- Power off

1

4

Class: Comm-interface

Attrimutes:
- Channel parameters
- Data rate

Methods:
- Send data
- Receive Data
- Connect

1

1

Node 2

Microcontroller SW

Processing

Calibrations

Sensor

Sign
al C

o
n

d
.

A
D

C

C
o

m
m

u
n

ic
at

io
n

C
o

m
m

in
te

rf
ac

e
A

n
al

o
g

o
u

tp
u

t

Actuator

© BME-MIT 2017 5.

Analyzing of Software Requirements

Software
Requirements

Software – Hardware
interface

Software
architecture

Test results

Test cases

Verification &
Validation

Specification of software architecture

Specification of
Software components

and interfaces

Software architecture

Verification &
Validation

Specification of
Software layers

© BME-MIT 2017 6.

Layered software architecture example
AUTOSAR

© BME-MIT 2017 7.

Layered software architecture example
AUTOSAR

© BME-MIT 2017 8.

Layered software architecture example
CMSIS (v1.3)

© BME-MIT 2017 9.

Layered software architecture example
CMSIS (v3)

© BME-MIT 2017 10.

Layered software architecture example
CMSIS (v4)

© BME-MIT 2017 11.

Analyzing of Software Requirements

Software
Requirements

Software – Hardware
interface

Software
architecture

Test results

Test cases

Verification &
Validation

Specification of software architecture

Specification of
Software components

and interfaces

Software architecture

Verification &
Validation

Specification of
Software layers

Specification of
Software

operation states

© BME-MIT 2017 12.

Initialization

Normal
operation

Service

Calibration

Error mode

Energy saving
mode

Software operation states

© BME-MIT 2017 13.

Software module
specification

Test cases

Software module specification

Data flow
specification

Behavior model
specification

Real-Time
model specification

Software module design

Software module
requirements

Test results
Verification &

Validation

Verification &
Validation

© BME-MIT 2017 14.

Specification of the data flow, and data model

 Most of the cases there are domain specific language
for this

o Simulink

o ASCET

© BME-MIT 2017 15.

Behavior model specification

 Most of the cases some State machine description

© BME-MIT 2017 16.

Specification of real time model

 Typically tasks with fix period time: 2.5ms, 5ms, 10ms
…

© BME-MIT 2017 17.

Specification of the Real-Time behavior

 Typically tasks with fix period time: 2.5ms, 5ms, 10ms
…

 DMA: Deadline Monotonic analysis

© BME-MIT 2017 18.

Model based code generation
Simulink Real-Time Workshop

© BME-MIT 2017 19.

Application area of generated code

Generated codeGenerated code

© BME-MIT 2017 20.

Implementing

© BME-MIT 2017 21.

Some issues related to implementation

 Problems caused by hardware limitations:
o Fix, or floating point representation
o Online calculation or lookup table
o Problems arising due to floating point calculations

 Considering hardware architecture
o Special hardware dependent peripherals: DMA
o Cache an its behavior
o Tightly-coupled memory
o Internal or external RAM
o Power safe modes: Sleep levels.

© BME-MIT 2017 22.

General rules of software implementation

 Many of them are independent of SIL or ASIL level

© BME-MIT 2017 23.

Program language used for
implementation

 Statistics of Embedded Market Study

© BME-MIT 2017 24.

MISRA-C language subset rules

(Motor Industry Software Reliability Association)

 MISRA-C 1998: The first version. Its goal is to
improve the quality of automotive software in
the UK (United Kingdom)

 A MISRA-C 1998 version getting widespread and
used not only for automotive software

 A MISRA-C 2004: Also approved in the USA (SAE
J2632) and Japan
o Upgrade and clarification of MISRA-1998
o 121 Mandatory and 20 Advisory rules for C language

 MISRA-C 2012: introduced in 2013 based on C99
standard

© BME-MIT 2017 25.

Purpose of MISRA-C

 C is a very free language. Programmer can
use it a very flexible way

o Programmers can write syntactically good, or
semantically wrong code. Add rules to avoid
these situations.

o Prohibit the use of non unambiguous variable
type usage

o Controlling precedens usage
o Prohibit the use of non structural programing

© BME-MIT 2017 26.

Trivial rules

 Comments can not contain code lines
o Can cause problem, because of embedded comments and

the programmers wont know why these lines are
uncommented

 Do not modify a cycle variable inside a cycle

 Using goto is prohibited!

 Using continue is prohibitied!

 It is prohibited to use bitmanipulation for signed, or
floating types (>>, <<, ~, &, ^)

flag = 1;
for (i = 0; (i<5) && (flag == 1); i++)
{

flag = 0; /* Can be used to terminate the cycle */
i = i + 3; /* Can not be used */

}

© BME-MIT 2017 27.

Non trivial rules

 There are compiler depended behavior. For
example divinding to integer number is not
unambiguous

o (-5/3) can be -1 where the remainder is -2

o (-5/3) can be -2 where the remainder is +1

 Type conversions can lead to problems:

uint16_t u16a = 40000;
uint16_t u16b = 30000;
uint32_t u32x;

U32x = u16a + u16b; /* u32x = 70000 or 4464? */

© BME-MIT 2017 28.

SEI CERT Coding Standards

 Similar to MISRA-C, but not so embedded specific

 C, C++, JAVA, Perl, Android

 Levels: Severity, Likehood, Remediation cost

© BME-MIT 2017 29.

Style guides

 The goal of Style guides is to give an uniform view
to the software code

o Non uniform code make the teamwork harder

 There is no an international standard for this

 Companies has internal coding standards

o Structure of C and header files

o Variable naming conversions

o Control flow styling

o Comment styling

© BME-MIT 2017 30.

Typical C file structure

1.Comment about the name of the file, its purpose, the
main author, version, and history. (Some version control

systems can handle this headers automaticaly)

2. Header file includes

3. Definitions: Typedefs, Defines, Contants, macros,

4. Global variables: extern, non static, static global

5. Functions: usually in order of usage

© BME-MIT 2017 31.

Structure of a typical Header file

1. Comment about the name of the file, its purpose, the main
author, version, and history. A name of the file cannot be a
same as a standard c include name like “math.h”.

2. Header file starting structure
#ifndef EXAMPLE_H
#define EXAMPLE_H
... /* body of example.h file */
#endif /* EXAMPLE_H *

3, Do not define variable in header file

© BME-MIT 2017 32.

Naming notation

 Hungarian Notatinon is one of the most widespread

 The system comes from the Hungarian naming logic,
the where the family name precede the given name

 This logic is used for the variables. First there is a
type or application notation used after that the
name

 There are two variant System and Application
o System uses the type of the variable as forename

o Application using the application area or goal as forename

 This notation usually extended with the visibility
notation

© BME-MIT 2017 33.

Examples for Hungarian notation

bBusy: boolean
cApples: count of items
dwLightYears: double word (system)
fBusy: boolean (flag)
nSize: integer (system) vagy count (application)
iSize: integer (system) vagy index (application)

g_nWheels: member of a global namespace, integer
m_nWheels: member of a structure/class, integer
s_wheels: static member of a class
_wheels: local variable

© BME-MIT 2017 34.

Structure of control flow

© BME-MIT 2017 35.

Automatic formatting tools

 Artistic Style: free to download

© BME-MIT 2017 36.

Usual problems about documentation

1. We write the code
2. We make comment for it
3. We make the documentation

4. We modify the code
5. Maybe the comment is modified
6. There is a high probability that the

documentation won’t be modified

Inconsistent state: code – comment -
documentation

© BME-MIT 2017 37.

Automated documentation generation form
comment: Doxygen

 First version 1997
 Intended to solve the comment – documentation

inconsistency problem
 Two type of comenting style is suported
 JAVA doc style

 C stlye

/**
... text ...

*/

/*!
... text ...

*/

© BME-MIT 2017 38.

Example for Doxygen commenting

/*! \fn void UART1_Init(unsigned long baud_rate, void (*handler)(void));

* \brief An inicialisation function to redirect STDIO to UART1

* \param baud_rate: Baudrate in bit/sec

* \param handler: Callback function for receiving UART characters with IT

* \return nothing

*/

/** @fn void UART1_Init(unsigned long baud_rate, void (*handler)(void));

* @brief An inicialisation function to redirect STDIO to UART1

* @param baud_rate: Baudrate in bit/sec

* @param handler: Callback function for receiving UART characters with IT

* @return nothing

*/

© BME-MIT 2017 39.

Creating groups

/** @addtogroup my group

@{

*/

……
/**
@}
*/

 Doxygen creates file based documentation. To
organize the documentation to function or
module style the grouping of these modules are
needed.

 Used by the firmware libraries

© BME-MIT 2017 40.

Examples for using Doxygen

/** @brief I2C Init structure definition */
typedef struct
{
uint32_t I2C_ClockSpeed; /*!< Specifies the clock frequency */
uint16_t I2C_Mode; /*!< Specifies the I2C mode.

This parameter can be a value of @ref I2C_mode */
} I2C_InitTypeDef;

/** @defgroup I2C_mode

@{

*/
#define I2C_Mode_MASTER 1
#define I2C_Mode_SLAVE 0
/**
@}
*/

