
© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Configuration Management

VIMIMA11 Design and integration of embedded
systems

© BME-MIT 2017 2.

Configuration Items and Releases

time

time

time

time

C
o

n
fi
g

u
ra

tio
n
 it

e
m

s
C

o
n
fi
g

u
ra

tio
n
 R

e
le

a
s
e

s

Component 1

Component 2

Component 3

v1.0 v1.1 v1.2 V2.0

v1.0 v1.3 V2.1

v1.0 v1.1 v1.3 V1.6 V2.0

Configuration Release 1 Configuration Release 2

v1.0

v1.0

v1.0 v1.2V1.6

V2.1

© BME-MIT 2017 3.

Configuration Management
CMMI Process Area

 SG 1: Establish Baselines

o SP 1.1: Identify Configuration Items

o SP 1.2: Establish a Configuration Management System

o SP 1.3 Create or Release Baselines

 SG 2: Track and Control Changes

o SP 2.1: Track Change Requests

o SP 2.2: Control Configuration Items

 SG 3: Establish Integrity

o SP 3.1: Establish Configuration Management Records

o SP 3.2: Perform Configuration Audits

© BME-MIT 2017 4.

Identifying Configuration Items

 Requirements

 Product specifications

 Architecture documentation and design data

 Plans

 Hardware and equipment

 Code and libraries

 Test results

© BME-MIT 2017 5.

Identifying Configuration Items

 Requirements

 Product specifications

 Architecture documentation and design data

 Plans

 Hardware and equipment

 Code and libraries

 Test results

 Development tools

 Test tools

 Compilers, even operating systems

© BME-MIT 2017 6.

Establish a Configuration Management
System

 Typical storing points in a Configuration management
system

o Dynamic: Locally at the developer

o Controlled, centralized: A central server for configuration
items

o Statically archived: Archives for the releases

 Determination of the configuration management
lifecycle

 Setting user privileges and rights

o Read, Write and Create access rights

o User account and User groups management

© BME-MIT 2017 7.

Example for a typical Configuration
Lifecycle

1 3 6 8 10 12

2 5 7 11

4 9

Branch

Trunk

Tag

merge
Branch

Abandoned
branch

© BME-MIT 2017 8.

Tools of Configuration management

 Mostly some kind of version control system is used

© BME-MIT 2017 9.

Version Control Systems
The need for such systems

 One typical day of a developer:

o At the start of the day we have a running software

o We add some lines to the software

o The software freezes

o We remove or uncomment the lines added

o The software still freezes

 The situation is even complicated if we work in a team:

o We add some lines to a working software

o Someone also add few lines to the same part of the software

o The software freezes

© BME-MIT 2017 10.

Trivial Version Control

 We create a new folder for every changes with the date of the
changes

 Every such folder should have a changelog file to describe the
changes

© BME-MIT 2017 11.

Triviális Version Control

 We create a new folder for every changes with the date of the
changes

 Every such folder should have a changelog file to describe the
changes

Problems

 Requires much disk space

 How often should we create a new version?

 Should we create copy only from a working version or from an
intermediate one too?

 The changelog file should be used very consistently, or it cause
more trouble then help.

© BME-MIT 2017 12.

Version Control Systems
Basic Terms

 The version managements system are used to follow
every changes made on a project

 The version control system logs

o Every changes to every file assigned to version control

o Every changes to the folder structure

 The user can

o Check any version of a file during its version control life
cycle

o Check the reason and the committer of every changes

o Making comments to its own changes

© BME-MIT 2017 13.

 Repository: Central Storage of the current and
previous versions of the project (master copy).

 Client: user who want to work on the project

 Working copy: A local version of the project
downloaded from the Repository by the Client

Centralised Version Control Systems
Basic Terms

© BME-MIT 2017 14.

Repository

Client 1 Client 2 Client 3

Check out
Or

Update

Commit

Centralised Version Control Systems
Basic behavior

© BME-MIT 2017 15.

Version Control Strategies: The main questions?

 How the version control systems support the
parallel work of multiple developers?

 What is the strategy or method to avoid the
inconsistency caused by the parallel work on the
same file?

© BME-MIT 2017 16.

The Lock–Modify–Unlock approach

 Before modifying a file it have to be locked

 After modification it should be unlocked

 There is no parallel modification of the file: only
one developer can modify the file by locking it

 Locked files can be read by other developers

© BME-MIT 2017 17.

Lock–Modify–Unlock approach

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 2;

Lock

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

© BME-MIT 2017 18.

Lock–Modify–Unlock approach

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 2;Read

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

© BME-MIT 2017 19.

if(temp>1)
a = 1;

else
a = 2;

Repository
User 1

Local copy
if(temp>1)

a = 1;
else

a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Lock–Modify–Unlock approach

© BME-MIT 2017 20.

if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Write

Lock–Modify–Unlock approach

© BME-MIT 2017 21.

if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Unlock

Lock–Modify–Unlock approach

© BME-MIT 2017 22.

if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 2;

Lock–Modify–Unlock approach

© BME-MIT 2017 23.

if(temp>1)
a = 1;

else
a = 3;

Repository

User 1
Local copy

if(temp>1)
a = 1;

else
a = 3;

User 2
Local copy

if(temp>1)
a = 1;

else
a = 3;

Lock–Modify–Unlock approach

© BME-MIT 2017 24.

Problems of Lock–Modify–Unlock approach

 Can lead to administrative problems:
o One of the developers forget to unlock a file and goes to

holyday …
o System administrator is needed to unlock those files

 Cause unnecessary waiting:
o If more than one developers want to modify the same C file,

but different parts of it, then there is no reason to exclude the
others.

 It can lead to the false illusion of safety:
o Developers with the lock and modify approach tends to

forget the dependency of different software parts.

© BME-MIT 2017 25.

Copy–Modify–Merge approach

 Multiple developers check out from the repository to
their working copies.

 During the commit phase they solve the conflicts by
merging their versions.

 The Merging process is supported by the version control
system, but it requires human interactions and decisions.

© BME-MIT 2017 26.

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 1;

else
a = 2;

Check out

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 2;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 27.

if(temp>1)
a = 1;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 28.

if(temp>1)
a = 10;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 20;

Commit

The Copy–Modify–Merge approach in work

© BME-MIT 2017 29.

if(temp>1)
a = 10;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 30.

if(temp>1)
a = 10;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 1;

else
a = 20;

if(temp>1)
a = 10;

else
a = 2;

Update and
Edit conflicts

The Copy–Modify–Merge approach in work

© BME-MIT 2017 31.

if(temp>1)
a = 10;

else
a = 2;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 10;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 32.

if(temp>1)
a = 10;

else
a = 20;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 2;

User 2
Local working copy

if(temp>1)
a = 10;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 33.

if(temp>1)
a = 10;

else
a = 20;

Repository

User 1
Local working copy

if(temp>1)
a = 10;

else
a = 20;

User 2
Local working copy

Update

if(temp>1)
a = 10;

else
a = 20;

The Copy–Modify–Merge approach in work

© BME-MIT 2017 34.

A Copy–Modify–Merge megközelítés
merits and flaws

 It enables the parallel work of multiple
developers

 Commit signals the conflicts

 Human interaction is needed to solve
conflicts

 Version Control Systems do not replace
the communication among team
members

© BME-MIT 2017 35.

When do we need to use the lock-unlock
approach?

 For binary files, where the text based
merge is not possible.

oWav files, other raw data files

oOutputs of some tools like PCB designers

 Therefore the lock function is available
in most of the version control systems

© BME-MIT 2017 36.

Centralized Version Control Systems
SVN, server solution example

© BME-MIT 2017 37.

 Free SVN Client

(there is a CVS version too)
o http://tortoisesvn.net/

 It can overlay the icons of
Windows

Centralized Version Control Systems
SVN, client, TortoiseSVN

© BME-MIT 2017 38.

Repository

Working copy

u
p

d
at

e

co
m

m
it

Distributed Revision Control

Developer 1

Repository

Working copy

u
p

d
at

e

co
m

m
it

Developer 2

Repository

Working copy

u
p

d
at

e

co
m

m
it

Developer 3

Push / Pull

© BME-MIT 2017 39.

Distributed Revision Control
merits

 Everyone has its own sandbox
o Own repository, individual commit strategy

o Easy to access the logs of own repository

 It works of line too
o Centralized versions requires a server

 Fast
o Don’t have to wait for the network communication

 Easy to manage
o There is no need for a server

 Easy to make branches
o Every developer has its own branch

© BME-MIT 2017 40.

Distributed Revision Control
flaws

 There is still a need for back-up

o The other developers repository cannot be considered as
a back-up, because those can be very different

 There is no such us current release

o Everybody has its own version

 There are no version numbers

o Every change has its GUID (Globally Unique ID), but
there is no such continuously like: rev 1, rev 2, rev 3

© BME-MIT 2017 41.

Repository

Working copy

u
p

d
at

e

co
m

m
it

Distributed Revision Control
Usual approach

D
ev

el
o

p
er

1

Repository

Working copy

u
p

d
at

e

co
m

m
it

D
ev

el
o

p
er

2

Repository

Szerver

© BME-MIT 2017 42.

Distributed Revision Control
GIT “server side”

 According to terms there is not really one

 There are service providers like GitHub that can provide a
centralized server for Git pushes (more then 26 million
repo)

© BME-MIT 2017 43.

Distributed Revision Control
GIT “client side”

 According to the terms there is not really one …

 GitHub for windows

 TortoiseGIT

© BME-MIT 2017 44.

Controlling Version Numbers
Semantic Versioning

 Major: major change that introduce incompatibility with
previous verison. Like API (Application Programming
Interface) change or functionality change.

 Minor: Change of functionality, but backwards-compatible
API and features.

 Bug: backwards-compatible bug fixes.

Major Minor Bug

2 10 3

