
Introduction to Deep Learning
CS 584: Big Data Analytics

CS 584 [Spring 2016] - Ho

Deep Learning: “The New Cool”

http://www.datasciencecentral.com/profiles/blogs/data-science-ml-deep-learning-iot-ai-exploding

http://www.datasciencecentral.com/profiles/blogs/data-science-ml-deep-learning-iot-ai-exploding

CS 584 [Spring 2016] - Ho

Deep Learning: Overview
• Form of representation

learning

• Aimed at learning feature
hierarchies

• Features from higher levels
of the hierarchy are formed
by lower level features

• Each hidden layer allows
for more complex features
of input http://www.deeplearningbook.org/contents/intro.html

http://www.deeplearningbook.org/contents/intro.html

CS 584 [Spring 2016] - Ho

Deep Learning: The Promised Land
Automatic feature discovery

• Hidden layers discover
semantically meaningful
concepts

• Features learned without need
for seeing exponentially large
number of configuration of other
features

• Expressiveness of deep
networks

http://www.deeplearningbook.org/contents/intro.html

http://www.deeplearningbook.org/contents/intro.html

CS 584 [Spring 2016] - Ho

Deep vs Shallow Architectures

http://www.slideshare.net/roelofp/041114-dl-nlpwordembeddings

http://www.slideshare.net/roelofp/041114-dl-nlpwordembeddings

CS 584 [Spring 2016] - Ho

History of Deep Learning
• Inspired by architectural depth of the brain, researchers

wanted to train deep multi-layer neural networks

• No successful attempts were reported before 2006
except convolutional neural networks [LeCun, 1998]

• Positive experimental results with two or three levels (or
or two hidden layers), but training deeper networks was
computationally infeasible or yielded poor results

• Breakthrough in 2006: Deep Belief Networks [Hinton et
al., 2006] & Autoencoders [Bengio et al., 2007]

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

CS 584 [Spring 2016] - Ho

Perceptron [Rosenblatt, 1957]
• Binary classifier that maps input to an output value

• Basic neural network building block

• Simplest feedforward neural network

output =

⇢
0 if

P
j wjxj  threshold

1 if

P
j wjxj > threshold

http://neuralnetworksanddeeplearning.com/chap1.html

http://neuralnetworksanddeeplearning.com/chap1.html

CS 584 [Spring 2016] - Ho

Perceptron: General Case
• Threshold is cumbersome and can

be replaced by a bias (input of 1)

• Different activation functions can be
utilized (for non-linear classification)

• Sigmoid function

• Hyperbolic tangent function

• Rectified linear unit (ReLU)

• Softplus

https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/

https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/

CS 584 [Spring 2016] - Ho

Neuron —> Perceptron

http://vision.stanford.edu/teaching/cs231n/slides/lecture5.pdf

http://vision.stanford.edu/teaching/cs231n/slides/lecture5.pdf

CS 584 [Spring 2016] - Ho

Multilayer Perceptrons (MLP): Feedforward Neural
Network

• Composition of perceptrons, connected in different ways
and operation on different activation functions

• Each unit of layer t is typically connected to every unit of
the previous layer t - 1

http://neuralnetworksanddeeplearning.com/chap1.html

http://neuralnetworksanddeeplearning.com/chap1.html

CS 584 [Spring 2016] - Ho

Backpropogation Algorithm
• Method of training

neural network via
gradient descent

• Calculate error at output
layer for each training
example

• Propagate errors
backward through the
network and update the
weights accordingly

https://openi.nlm.nih.gov/imgs/512/121/2716495/PMC2716495_bcr2257-1.png

https://openi.nlm.nih.gov/imgs/512/121/2716495/PMC2716495_bcr2257-1.png

CS 584 [Spring 2016] - Ho

Example: Backpropogation
• Simple neural network with

two inputs, two hidden
neurons and two output
neurons

• Activation function is logistic
function

• Imagine single training set
with inputs (0.05, 0.10) and
want output to be 0.01 and
0.09 and want to minimize
squared error

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 584 [Spring 2016] - Ho

Example: Backpropogation (2)

h1 = w1i1 + w2i2

h2 = w3i1 + w4i2

o1 =
1

1 + e

�(w5h1+w6h2)

o2 =
1

1 + e

�(w7h1+w8h2)

e

ô1 =
1

2
(o1 � ô1)

2 = 0.274811083

e

ô2 = 0.023560026

e

total

= e

ô1 + e

ô2
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 584 [Spring 2016] - Ho

Example: Backpropogation (3)

@e

total

@w5
=

@e

total

@ô1

@ô1

@ĥ1

@ĥ1

@w5

= �(o1 � ô1)ô1(1� ô1)ĥ1

w+
5 = w5 � ⌘

@e
total

@w5

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 584 [Spring 2016] - Ho

Example: Backpropogation (4)

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 584 [Spring 2016] - Ho

MNIST Dataset
• Scanned images of handwritten digits

• 28 x 28 greyscale images

• Training data

• 60,000 images

• 250 people

• Test Data

• 10,000 images

• Different 250 people

CS 584 [Spring 2016] - Ho

Experiment: 2 Layer Perceptron
• 784 input units, variable number

of hidden units, and 10 output
units

• Activation function = logistic
sigmoid

• Sum of squared error function &
backpropogation algorithm

• Stochastic variant of mini-batch
training

http://davidstutz.de/recognizing-handwritten-digits-mnist-dataset-twolayer-perceptron

http://davidstutz.de/recognizing-handwritten-digits-mnist-dataset-twolayer-perceptron

CS 584 [Spring 2016] - Ho

Experiment: 2 Layer Perceptron

http://davidstutz.de/wordpress/wp-content/uploads/2014/03/seminar.pdf

http://davidstutz.de/wordpress/wp-content/uploads/2014/03/seminar.pdf

CS 584 [Spring 2016] - Ho

Obstacles to Deep MLPs
• Requires lots of labeled training data

• Computationally extremely expensive

• Vanishing & unstable gradients

• Difficult to tune

• Choice of architecture (layers +
activation function)

• Learning algorithm

• Hyperparameters
http://neuralnetworksanddeeplearning.com/chap5.html

http://neuralnetworksanddeeplearning.com/chap5.html

CS 584 [Spring 2016] - Ho

Convolutional Neural Networks (CNN)
• Specialized neural network for processing known, grid-

like topology

• Powerful model for image, speech recognition

• Use convolution instead of general matrix multiplication in
one of its layers

CS 584 [Spring 2016] - Ho

Convolution Layer

Convolve the filter with the image 
(i.e., slide over image spatially

computing dot products)

1 number to
represent result of

filter with small
chunk of image

http://vision.stanford.edu/teaching/cs231n/slides/winter1516_lecture7.pdf

http://vision.stanford.edu/teaching/cs231n/slides/winter1516_lecture7.pdf

CS 584 [Spring 2016] - Ho

Convolution Layer (Multiple Filters)

Stacking up multiple filters yields “new image”
http://vision.stanford.edu/teaching/cs231n/slides/winter1516_lecture7.pdf

http://vision.stanford.edu/teaching/cs231n/slides/winter1516_lecture7.pdf

CS 584 [Spring 2016] - Ho

LeNet 5 [LeCun et al., 1998]

• 32 x 32 pixel with largest character 20 x 20

• Black and white pixel values are normalized to get mean of 0,
standard deviation of 1

• Output layer uses 10 RBF (radial basis activation function), one for
each digit

CS 584 [Spring 2016] - Ho

CNN: MNIST Dataset Results
• Original dataset 

(60,000 images)

• Test error = 0.95%

• Distorted dataset 
(540,000 artificial distortions
+ 60,000 images)

• Test error = 0.8%
Misclassified examples

CS 584 [Spring 2016] - Ho

Why is CNN Successful?
Compared to standard feedforward neural networks with
similarly-sized (5-7) layers

• CNNS have much fewer connections and parameters
=> easier to train

• Traditional fully-connected neural network is almost
impossible to train when initialized randomly

• Theoretically-best performance is likely only slightly
worse than vanilla neural networks

CS 584 [Spring 2016] - Ho

Recurrent Neural Networks (RNN)
• Family of neural networks for processing sequential data

• Shares the same weights across several time steps

CS 584 [Spring 2016] - Ho

The Need for Sequences

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

“Vanilla” NN: 
fixed-sized input to
fixed-size output

Sequence input 
(e.g., sentiment analysis)

Sequence output (e.g., image
captioning task where image
becomes sequence of words)

Sequence I/O (e.g.,
machine translation)

Synced sequence I/O
(e.g., video classification

on frame level)

http://karpathy.github.io/2015/05/21/rnn-effectiveness

CS 584 [Spring 2016] - Ho

Unfolding RNN for Backpropogation

CS 584 [Spring 2016] - Ho

Long-Term Dependency Problems
• Appeal of RNN is to connect previous information to

present task

• Gap between relevant information and point of needing it
can be large (e.g., word prediction for a sentence like I
grew up in France … I speak fluent ___)

• Long-range dependencies are difficult to learn because
of vanishing gradient or exploding gradient problem
(depending on the activation function)

CS 584 [Spring 2016] - Ho

Long Short-Term Memory Units (LSTM)
• Introduction of a new

structure called memory cell

• 4 components: input gate, a
neuron with a self-recurrent
connection, a forget gate,
and an output gate

• Ability to remove or add
information to the cell state
through the gates

http://www.deeplearningbook.org/contents/rnn.html

http://www.deeplearningbook.org/contents/rnn.html

CS 584 [Spring 2016] - Ho

Simple RNN vs LSTM

http://deeplearning4j.org/lstm.html

http://deeplearning4j.org/lstm.html

CS 584 [Spring 2016] - Ho

Experiment: Shakespearean Writing
• Download all works of

Shakespeare into single
file

• Train 3-layer RNN with
512 hidden nodes on
each layer

• Create samples for both
speaker’s names and
the contents

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CS 584 [Spring 2016] - Ho

Deep Learning: The Dark Ages
• Early 2000s: failure of backpropogation + ascent of SVMs led

to a slump

• Hinton & Bengio hatched plan to “rebrand” neural networks
with deep learning

• Resurgence with “A fast learning algorithm for deep belief
nets” [Hinton et al., 2006]

• Clever way to initialize neural networks rather than randomly

• Followed by “Greedy layer-wise training of deep
networks” [Bengio et al., 2007]

CS 584 [Spring 2016] - Ho

Deep Learning Rises Again

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

CS 584 [Spring 2016] - Ho

Deep Learning Rises Again (2)
• Labeled datasets were thousands of times too small

• Unsupervised pre-training could help mitigate bad
initialization

• Computers were millions of times too slow

• Weights were initialized in a stupid way

• Used wrong type of non-linearity
Deep learning = lots of training data + parallel computation +

scalable, smart algorithms
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

CS 584 [Spring 2016] - Ho

Autoencoder
• MLP only works with labeled

training examples

• Autoencoder learns
compressed, distributed
representation (encoding) of the
dataset

• Aim to “recreate” the input

http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

encode decode

http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

CS 584 [Spring 2016] - Ho

Autoencoder: MNIST Results
500 hidden units with 20 epochs and mini batch size of 20

https://triangleinequality.wordpress.com/2014/08/12/theano-autoencoders-and-mnist/

https://triangleinequality.wordpress.com/2014/08/12/theano-autoencoders-and-mnist/

CS 584 [Spring 2016] - Ho

Stacked Autoencoders
• Network of multiple stacked auto encoders

• Can capture “hierarchical grouping” or “part-whole
decomposition” of input

• Greedy training algorithm

• Train first autoencoder using backpropogation (to learn
raw inputs)

• Train second layer autoencoder using output of first
layer to learn these secondary features

CS 584 [Spring 2016] - Ho

Stacked Autoencoders: Classification

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

CS 584 [Spring 2016] - Ho

Restricted Boltzmann Machines (RBM)
• Generative stochastic neural

network that can learn a
probability distribution over
its set of inputs

• Restrict connectivity to
make learning easier

• One layer of hidden units

• No connections between
hidden units

http://deeplearning4j.org/restrictedboltzmannmachine.html

http://deeplearning4j.org/restrictedboltzmannmachine.html

CS 584 [Spring 2016] - Ho

RBM: Reconstruction via Backpropogation

http://deeplearning4j.org/restrictedboltzmannmachine.html

minimize KL divergence between
probability distribution and ground-

truth distribution

http://deeplearning4j.org/restrictedboltzmannmachine.html

CS 584 [Spring 2016] - Ho

Deep Belief Network (DBN)
• Probabilistic generative models

• Deep architecture — multiple layers

• Each layer contains high-order correlations between
the activities of hidden features in the layer below

• Stack RBM to get layers

http://www.pyimagesearch.com/wp-content/uploads/2014/09/deep_belief_network_example.png

http://www.pyimagesearch.com/wp-content/uploads/2014/09/deep_belief_network_example.png

CS 584 [Spring 2016] - Ho

DBN: MNIST Dataset Results
Examples of correctly recognized handwritten digits that the
network hadn’t seen before

CS 584 [Spring 2016] - Ho

DBN: MNIST Dataset Results (2)

Model Test Error

Generative model via RBM 1.25%

SVM [Decoste et al.] 1.4%

Backpropogation with 1000 hidden units [Platt] 1.6%

Backpropogation with 500 —> 300 hidden units 1.6%

K-nearest neighbor ~3.3%

https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf

https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf

CS 584 [Spring 2016] - Ho

Deep Learning Resources
• Website with variety of resources and pointers at deeplearning.net

• Deep Learning Tutorial by Stanford (http://ufldl.stanford.edu/
tutorial/)

• Neural Networks and Deep Learning online book (http://
neuralnetworksanddeeplearning.com/)

• Deep Learning book by Goodfellow, Bengio, and Courville (http://
www.deeplearningbook.org/)

• NIPS 2015 Tutorial by Hinton, Bengio & LeCun (http://
www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf)

http://deeplearning.net
http://ufldl.stanford.edu/tutorial/
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

CS 584 [Spring 2016] - Ho

Deep Learning Resources (2)
• Deep Learning for Java (http://deeplearning4j.org/)

• ConvNetJS (http://cs.stanford.edu/people/karpathy/
convnetjs/)

• Andrej Karpathy’s Blog on Neural Networks (http://
karpathy.github.io/)

• Colah’s Blog on Neural Networks (https://
colah.github.io/)

http://deeplearning4j.org/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://karpathy.github.io/
https://colah.github.io/

CS 584 [Spring 2016] - Ho

Deep Learning Toolkits
• TensorFlow (by Google)

• Theano (developed by academics)

• Torch (written by Lua)

• Caffe

For a reasonable comparison of the frameworks, see  
https://github.com/zer0n/deepframeworks/blob/master/

README.md

https://github.com/zer0n/deepframeworks/blob/master/README.md

