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Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.



Table 1.1 Table of the coefficients w* for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M=0 M=1 M=6 M=9
Wy 0.19 0.82 0.31 0.35
w7y -1.27 7.99 232.37
ws -25.43 -5321.83
w3 17.37 48568.31
wy -231639.30
w: 640042.26
wWg -1061800.52
wy 1042400.18
wg -557682.99
wy 125201.43




Figure 1.5 Graphs of the root-mean-square

error, defined by (1.3), evaluated I —
on the training set and on an inde- —6— Training
pendent test set for various values —6— Test
of M.
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.



Table 1.2 Table of the coefficients w™ for M =
9 polynomials with various values for
the regularization parameter A. Note
that InA = —oo corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
Aincreases, the typical magnitude of
the coefficients gets smaller.

InA\=—-0 InA=-18 InA=0
wy 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
wi 48568.31 -31.97 -0.05
w} -231639.30 -3.89 -0.03
wk 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wr | 1042400.18 -45.95 -0.00
wi -557682.99 -01.53 0.00
w 125201.43 72.68 0.01
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Figure 3.5 lllusiration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter A, using the sinusoidal data set from Chapter 1. There are L. = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of In A (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).



qg=10.5

Figure 3.3

g=1

Contours of the regularization term in (3.29) for various values of the parameter 4.




Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer g = 2 on the left and the lasso
regularizer ¢ = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w*.
The lasso gives a sparse solution in
which wi = 0.
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Figure 3.2 Geometrical interpretation of the least-squares
solution, in an N-dimensional space whose axes
are the values of ¢4,....ty. The least-squares
regression function is obtained by finding the or-
thogonal projection of the data vector t onto the
subspace spanned by the basis functions ¢;(x)
in which each basis function is viewed as a vec-
tor ¢, of length IV with elements ¢;(x..).
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter A correspondingto InA = —18 and InA = 0. The
case of no regularizer, i.e., A = 0, corresponding to In A = —oc, is shown at the bottom right of Figure 1.4.
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Figure 3.7 lllustration of sequential Bayesian learning for a simple linear model of the form y(z. w) =
wo + wix. A detailed description of this figure is given in the text.
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4} using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.
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Figure 3.9 Plots of the function y(x, w) using samples from the posterior distributions over w corresponding to
the plots in Figure 3.8.



Figure 3.13 Schematic illustration of the
distribution of data sets for p(D)

three models of different com-
plexity, in which Ay is the
simplest and Mas is the most
complex. Mote that the dis-
tributions are normalized. In
this example, for the partic-
ular observed data set Dg,
the model M2 with intermedi-
ate complexity has the largest
evidence.
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