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Decision theory
probability theory+utility theory

Decision situation:

— Actions d,
— QOutcomes O;
— Probabilities of outcomes p(oj |ai)

— Utilities/l f out
i IQIZ;{ os‘ses of outcomes U (Oj | ai)
* , micromort
— Maximum Expected Utility EU(ai) — ZJ_U (Oj | ai) p(oj | ai)
Principle (MEU)

* Best action is the one with a* — arg MaX i EU (al )

maximum expected utility

Actions g Outcomes Probabilities  Utilities, costs Expected utilities
(which experiment) (e.g. dataset)

- a ©<
0.

J

P(ojla) U(0), C(a) } EU(a) = Y P(o/a)U(o)



Decision trees

* One possible representation for hypotheses

 E.g., hereisthe “true” tree for deciding whether to wait:
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Expressiveness

* Decision trees can express any function of the input attributes.
 E.g., for Boolean functions, truth table row - path to leaf:

A B AxorB /\
F F F
F

= F F

* Trivially, there is a consistent decision tree for any training set with one path to leaf
for each example (unless f nondeterministic in x) but it probably won't generalize
to new examples

* Prefer to find more compact decision trees



Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2" rows = 22"

 E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

How many purely conjunctive hypotheses (e.g., Hungry A —Rain)?
* Each attribute can be in (positive), in (negative), or out
= 3" distinct conjunctive hypotheses
* More expressive hypothesis space
— increases chance that target function can be expressed
— increases number of hypotheses consistent with training set
—> may get worse predictions




Decision trees, decision graphs

T"(D|Bleeding:strong)

%g\ujar
P(Dla,e) P(D|w,r)
h.wild / h.wild / mutated

P(Dla,l,h.w.) P(Dla,l,m) P(D|w,i,h.w.) P(D|w,i,m)

Onset=eatly Onse

Decision tree: Each internal node represent a (univariate) test, the leafs contains
the conditional probabilities given the values along the path.
Decision graph: If conditions are equivalent, then subtrees can be merged.
E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreq)
A.l.: BN homework guide



Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situ-
ations with uncertain prizes

Lottery L = [p. A; (1 —p), B I—p

Notation:

A>B A preferred to B
A~ B indifference between A and B
AZ B B not preferred to A
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Rational preferences

|dea: preferences of a rational agent must obey constraints.
Rational preferences =

behavior describable as maximization of expected utility

Constraints:

Orderability
(A-B)V(B>=A)V (A~ B)
Transitivity
(A>=B)AN(B>C) = (A>C)
Continuity
A-B>~C = dp [pA; 1 —p,C|~B
Substitutability
A~B = [pA; 1—p,C|~|p,B;1—p,C]|
Monotonicity
A-B = (p>q & |p.A; 1 —p, B Z g, A; 1 —q, B])
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An irrational preference

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced
to give away all its money

If B = (', then an agent who has

> A
(" would pay (say) 1 cent to get BB ) .
If A > B, then an agent who has
B would pay (say) 1 cent to get A f (f
§ |

If " > A, then an agent who has N——
A would pay (say) 1 cent to get C e
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Maximizing expected utility
Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944).

Given preferences satisfying the constraints
there exists a real-valued function U such that

UA)>UB) & AXB
U(lp1, 51 - Py Sn]) = 22 p;U(S;)

MEU principle:

Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe
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Utilities
Utilities map states to real numbers. Which numbers?
Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
“best possible prize” u+ with probability p

‘worst possible catastrophe” ., with probability (1 — p)
adjust lottery probability p until A ~ L,

continue as before

pay $30 ~ L

0.000001 instant death
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Utility scales

Normalized utilities: v+~ = 1.0, u;, = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALY's: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation
Ulx) =kU(xz)+ ks where ky >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes



Money

Money does not behave as a utility function. Given a lottery L with
expected monetary value £V V' (L),
usually U(L) < U(EMV (L)), i.e., people are risk-averse.

Utility curve: for what probability p am | indifferent between a prize
r and a lottery [p, $M; (1 — p). $0] for large N7

Typical empirical data, extrapolated with risk-prone behavior:
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Utility
u{150)
U{ioo)

EU(100)
=UJ(82)

U(50)

Risk premium in risk aversion and loving

i

Utility

U{150)

EUEID':'
U100

L50)

=U(118)

Income




Decision networks (DNs)

Add action nodes and utility nodes to belief networks
to enable rational decision making

Airport Site

Algorithm:

For each value of action node
compute expected value of utility node given action, evidence
Return MEU action



Sensitivity of the inference
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Value of information

|dea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and 5, exactly one has oil, worth %
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is £ /2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
— expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A” or “no oil in A", prob. 0.5 each (given!)
= [0.5 x value of "buy A" given “oil in A"
+ 0.5 x value of “buy B" given “no oil in A"] - 0

= (0.5 x k/2)+ (0.5 x k/2) — 0 = k/2

%, ! %,



General formula

Current evidence £, current best action o
Possible action outcomes 5;, potential new evidence £,

FU(a|E) = 111c1\_J£ U(S;) P(S;|E,a)
Suppose we knew £, = ¢, then we would choose (e, S.T.
E(;‘T((lﬁk‘E. Ei=ej;) = 111&:\ 2, U(S;) P(S;|E,a, E;=ej;)

E; is a random variable whose value is currently unknown
— must compute expected gain over all possible values:

VPIg(E)) = (X P(Ej=ejt| E)EU (0, |E, Bj=ejt)) — EU(o|E)

(VPI = value of perfect information)



Properties of VPI

Nonnegative—in expectation, not post hoc
Vi B VPIg(E;) >0
Nonadditive—consider, e.g., obtaining £; twice
VPIg(E;, Ey) # VPIg(E;) +V PIg(Ey)
Order-independent
VPIg(Ej, Ey) = VPIg(Ej) +V Plg g (k) =V PIg(Ey) + V Plg g (E))

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
— evidence-gathering becomes a sequential decision problem



Extensions

e Bayesian learning
— Predictive inference
— Parametric inference
* Value of further information

e Sequential decisions
— Optimal stopping (secretary problem)
— Multiarmed bandit problem
— Markov decision problem




