Structural inference of independence relations

<u>Peter Antal</u> <u>antal@mit.bme.hu</u>

Outline

Can we represent exactly (in)dependencies by a BN?
From a causal model? Suff.&nec.?

The independence model of a distribution

The independence map (model) M of a distribution P is the set of the valid independence triplets:

 $M_{P} = \{I_{P,1}(X_{1};Y_{1}|Z_{1}), \dots, I_{P,K}(X_{K};Y_{K}|Z_{K})\}$

If P(X,Y,Z) is a Markov chain, then $M_P = \{D(X;Y), D(Y;Z), I(X;Z|Y)\}$ Normally/almost always: D(X;Z)Exceptionally: I(X;Z)

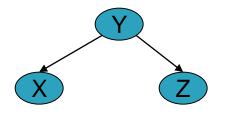
The semi-graphoid axioms

1. Symmetry: The observational probabilistic conditional independence is symmetric.

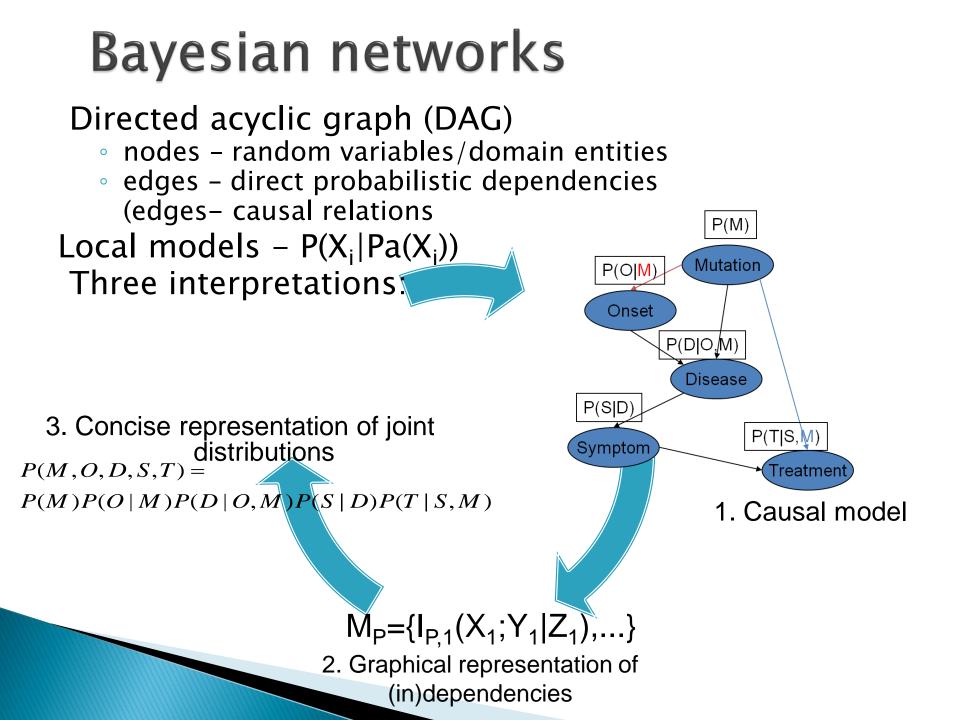
 $I_p(\boldsymbol{X}; \boldsymbol{Y} | \boldsymbol{Z}) iff I_p(\boldsymbol{Y}; \boldsymbol{X} | \boldsymbol{Z})$

2. Decomposition: Any part of an irrelevant information is irrelevant.

 $I_p(\boldsymbol{X}; \boldsymbol{Y} \cup \boldsymbol{W} | \boldsymbol{Z}) \Rightarrow I_p(\boldsymbol{X}; \boldsymbol{Y} | \boldsymbol{Z}) \text{ and } I_p(\boldsymbol{X}; \boldsymbol{W} | \boldsymbol{Z})$

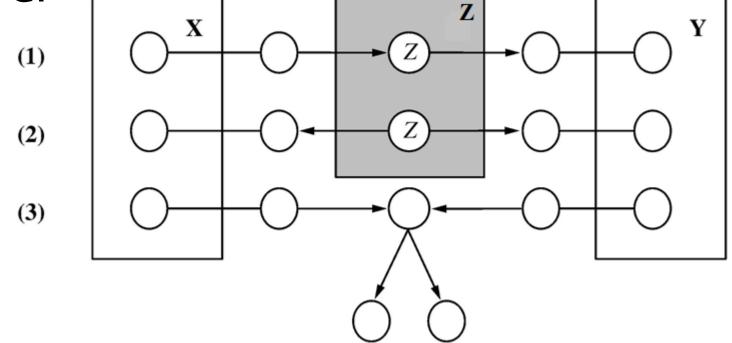

Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant information.

$$I_p(\boldsymbol{X}; \boldsymbol{Y} \cup \boldsymbol{W} | \boldsymbol{Z}) \Rightarrow I_p(\boldsymbol{X}; \boldsymbol{Y} | \boldsymbol{Z} \cup \boldsymbol{W})$$


 Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant information.

 $I_p(\boldsymbol{X}; \boldsymbol{Y}|\boldsymbol{Z}) \text{ and } I_p(\boldsymbol{X}; \boldsymbol{W}|\boldsymbol{Z} \cup \boldsymbol{Y}) \Rightarrow I_p(\boldsymbol{X}; \boldsymbol{Y} \cup \boldsymbol{W}|\boldsymbol{Z})$

The independence map of a N-BN



If P(Y,X,Z) is a naive Bayesian network, then $M_P=\{D(X;Y), D(Y;Z), I(X;Z|Y)\}$ Normally/almost always: D(X;Z)Exceptionally: I(X;Z)

Inferring independencies from structure: d-separation

I_G(X;Y|Z) denotes that X is d-separated (directed separated) from Y by Z in directed graph G.

d-separation and the global Markov condition

Definition 7 A distribution $P(X_1, \ldots, X_n)$ obeys the global Markov condition w.r.t. DAG G, if

 $\forall X, Y, Z \subseteq U (X \perp \!\!\!\perp Y | Z)_G \Rightarrow (X \perp \!\!\!\perp Y | Z)_P, \tag{9}$

where $(X \perp | Y | Z)_G$ denotes that X and Y are *d*-separated by Z, that is if every path p between a node in X and a node in Y is blocked by Z as follows

- 1. either path p contains a node n in Z with non-converging arrows (i.e. $\rightarrow n \rightarrow or \leftarrow n \rightarrow$),
- 2. or path p contains a node n not in Z with converging arrows (i.e. $\rightarrow n \leftarrow$) and none of its descendants of n is in Z.

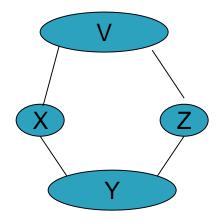
Bayesian network definitions

Theorem 1 Let P(U) a probability distribution and G a DAG, then the conditions above (repeated below) are equivalent:

- F P is Markov relative G or P factorizes w.r.t G,
- O P obeys the ordered Markov condition w.r.t. G,
- L P obeys the local Markov condition w.r.t. G,
- G P obeys the global Markov condition w.r.t. G.

Definition 8 A directed acyclic graph (DAG) G is a Bayesian network of distribution P(U) iff the variables are represented with nodes in G and (G, P) satisfies any of the conditions F, O, L, G such that G is minimal (i.e. no edge(s) can be omitted without violating a condition F, O, L, G).

Representation of independencies


D-separation provides a sound and complete, computationally efficient algorithm to read off an (in)dependency model consisting the independencies that are valid in all distributions Markov relative to G, that is $\forall X, Y, Z \subseteq V$

 $(X \perp\!\!\!\perp Y|Z)_G \Leftrightarrow ((X \perp\!\!\!\perp Y|Z)_P \text{ in all } P \text{ Markov relative to } G).$ (10)

For certain distributions exact representation is not possible by Bayesian networks, e.g.:

- 1. Intransitive Markov chain: $X \rightarrow Y \rightarrow Z$
- 2. Pure multivariate cause: $\{X,Z\} \rightarrow Y$
- 3. Diamond structure:

P(X,Y,Z,V) with $M_P = \{D(X;Z), D(X;Y), D(V;X), D(V;Z), I(V;Y|\{X,Z\}), I(X;Z|\{V,Y\}).. \}.$

