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Foreword

On behalf of the Organizing Committee, I welcome you to the 30th Minisymposium of the Department
of Measurement and Information Systems at the Budapest University of Technology and Economics.
As we celebrate this jubilee, it is an honor to announce that this is the first time we can organize the
event in the frame of VIK Inference, the Faculty of Electrical Engineering and Informatics Conference.
The significant number of presentations opens the way to having a full two-day event, again. This
joyful result has been gradually achieved as we have observed an increasing number of Ph.D. students
over the last couple of years. We hope this tendency will also remain unbroken in the upcoming years.
While regular presentations of our Ph.D. students give the backbone of the conference, the participants
will have the opportunity to gain insight into the SMART4ALL European Union project. Besides, our
talented IMSc students will present their results in a separate poster session.
The topics of the presentations express the diversity of the Department: we will have talks from the
area of digital signal processing, embedded systems, artificial intelligence, and fault tolerant systems.
I hope that the two days of the 30th Minisymposium will expose the details of our research activities,
as well as will imply fruitful conversations that can subserve to take the following step.

Budapest, February 6. 2023

Balázs Renczes
General Chair
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Integration Test Generation and Formal Verification
for Distributed Controllers

Bence Graics, István Majzik
Budapest University of Technology and Economics,

Department of Measurement and Information Systems
Budapest, Hungary

Email: {graics, majzik}@mit.bme.hu

Abstract—Software-intensive distributed controllers are be-
coming increasingly prevalent, among others, also in railway
interlocking systems (RIS). As such systems carry out critical
tasks, their systematic verification and testing are a must, which
can be supported by formal methods. This paper presents a
verification and testing approach for a distributed RIS subsystem
using hidden formal methods. The subsystem’s functional behav-
ior is modeled using statechart components defined in a high-level
UML-based modeling language, which are integrated according
to sound execution and interaction semantics defined by the RIS
protocol. The emergent model is automatically mapped into input
formalisms of model checker back-ends. Integration tests for the
system implementation are derived according to various model-
based coverage criteria using the model checker back-ends and
generated properties. The approach is implemented in our open
source Gamma Statechart Composition Framework.

Index Terms—MBSE, collaborating statecharts, hidden formal
methods, model checking, test generation, integrated tool suite

I. INTRODUCTION

Software-intensive programmable controllers are getting
more and more prevalent in critical infrastructure, e.g., in
railway interlocking systems (RIS). Such systems are generally
embedded into their dynamic environment and must coordinate
multiple subsystems/components to carry out complex tasks in
response to external commands or environmental changes.

The distributed nature of these systems encumbers their
design, necessitating precise means to describe the integration
of system components, including their execution and commu-
nication, in addition to their standalone behavior. Moreover,
as these systems carry out critical tasks, the automated formal
verification of their design and the testing of their implemen-
tation are a must in the development process.

Model-based and component-based systems engineering
(MBSE and CBSE) [1], [2] approaches promote the use of
reusable models and components based on high-level modeling
languages. However, they usually do not provide sophisticated
tool-centric means for the automated verification of the design
artifacts or the testing of the system implementation, either
due to informal model descriptions or the lack of sound and
efficient verification methods.

These issues are also prevalent in the railway domain: [3]
and [4] argue that the main barriers that hinder the wide adop-

This work was supported by the ÚNKP-22-3 New National Excellence
Program of the Ministry for Innovation and Technology.

tion of verification-oriented MBSE/CBSE approaches stem
from the lack of traceability and process integration between
the high-level models and verification back-ends.

This paper offers solutions to these shortcomings and
presents a verification and test generation approach (based on
hidden formal methods) for distributed controllers, adapted to
the design language and integration semantics of a specific
RIS design. The approach relies on the proprietary EXtended
State Machine Language (XSML) used in a railway project
to model the functional behavior of system components. The
models are transformed into the statechart language (GSL) [5]
of our Gamma Statechart Composition Framework [6], a
framework for the component-based design and verification
of reactive systems. The models are integrated in Gamma’s
composition language (GCL) [7] based on sound execution
and communication semantics in accordance with the system
specification. The composite model is then mapped into input
formalisms of model checker back-ends to support the exhaus-
tive verification of its behavior and generate integration tests
for the implementation based on various coverage criteria. The
mappings feature model reduction and slicing algorithms to
support industrial-scale systems.

Similar frameworks have been introduced in [8], [9] and
[10] for the verification of and test generation for component-
based reactive systems. However, these approaches rely on
commercial tools, hindering their extensibility, and do not pro-
vide flexibility in terms of integration semantics, contrary to
our approach building on the open source Gamma framework.

Our novel contributions are (1) the transformation of XSML
models into GSL, focusing on the languages’ characteristics,
(2) a new composition mode in GCL for the semantic-preserv-
ing integration of XSML components, and (3) the application
of our approach on a real-life distributed RIS subsystem under
development.

II. MAPPING XSML COMPONENTS INTO GSL

XSML is a textual statechart language reusing most ele-
ments of UML, e.g., it offers hierarchical states and transitions
for describing state-based behavior and variables for express-
ing memory. However, as it is designed to describe critical
functionalities, it aims for the easy interpretability of the
models and discards UML elements for complex transitions,
e.g., choice, merge, fork and join nodes, history states, as well
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as entry and exit actions of states. Instead, it offers a powerful
action language to capture the handling of variables as well as
control flow (target states) in transitions. It also refines UML’s
operational semantics to eliminate nondeterminism in regard
to transitions and orthogonal regions by introducing priorities
and thus, a sequential execution of these elements.

Listing 1 presents an excerpt of one of the RIS components,
called ObjectHandler, defined in XSML. The excerpt describes
a state where the component waits for the confirmation
message of a certain request. The waiting can end in an
expected confirmation (entering CmdConfirm) or a fallback to
a previous state (WaitTS1Req) via transitions due to an invalid
message or a timeout while managing variables (potentially
through functions) and dispatching messages via ports.� �
// Integer variables with different bitlengths
U8 SessionID;
U32 TimestampObj1, TimestampVk1;
...
state WaitTS2Req {
// Timeout based on a parameter value
timeout after (TimeConfirmationTimeout) {
change WaitTS1Req;
}
// Transition triggered by a Rigel message
event Rigel msg [msg.MsgType == MsgType.RigelMsgReqTs2]

from PortIn {
// Effects described in an action language
if (SessionID != msg.SessionId)
change CmdConfirm; // Potential target state

else {
var Rigel ansTs1Msg = ProcessReqTs2( // Function call
TimestampVk1, TimestampObj1, SessionID);

send ansTs1Msg to PortOut; // Message dispatch
change WaitTS1Req; // Potential target state

}
}
}� �

Listing 1: Excerpt from the ObjectHandler XSML model.

The XSML-GSL model transformation must handle two
characteristics of XSML besides the straightforward mapping
of most model elements, e.g., regions, states and variables:

1) Selecting target states in transitions: In XSML, a single
syntactic structure (if-else branches) is used to process
an event, specifying not only the actions but also differ-
ent target states (change statements) depending on the
conditional branches; in contrast to GSL, where each
transition shall have only a single, fixed target state.

2) Introducing priorities: In XSML, priorities of transitions
and orthogonal regions are used to ensure deterministic
behavior, which have to be represented in GSL.

Listing 2 illustrates how the transformation handles target
state selection during event processing. First, a transition trig-
gered by the corresponding event is introduced, which enters a
choice state. This transition executes the corresponding actions
while setting auxiliary boolean variables (toWaitTS1Req and
toCmdConfirm) that identify the corresponding target states.
From the choice state, a set of transitions is used, where
each transition enters a proper target state depending on the
values of the auxiliary variables referenced from their guard
expressions. Note that this mapping retains the atomicity of
transitions due to the semantics of choice states in GSL [5].

Introducing priorities to transitions and orthogonal regions
is based on so-called semantic variation points offered by
GSL, which – among others – support adjusting

• the execution of actions in orthogonal regions of com-
posite states, which can be sequential, i.e., in the order
of the declaration of regions, unordered, i.e, any region
permutation is considered valid, and parallel, i.e., actions
in orthogonal regions can interleave in any way; and,

• priority between enabled transitions leaving the same
state – the absence of priority leads to nondeterministic
choices between enabled transitions during execution.

With respect to the operational semantics of XSML, the
transformation applies the sequential execution of orthogonal
regions and transitions prioritized according to their order of
definition (“earlier” defined transitions have a higher priority).� �
// Auxiliary boolean variables for target state selection
var toWaitTS1Req, toCmdConfirm : boolean
..
// Choice state for target state selection
choice WaitTS2Req_
..
// Selecting target states: single transition
transition from WaitTS2Req to WaitTS2Req_ when

PortIn.msg [PortIn.msg::Value.MsgType ==
MsgType::RigelMsgReqTs2] / {

if (SessionID != PortIn.msg::Value.SessionId)
toCmdConfirm := true; // Setting target state
else {
var ansTs1Msg : Rigel := ProcessReqTs2( // Function call

TimestampVk1, TimestampObj1, SessionID);
raise PortOut.message(ansTs1Msg);
toWaitTS1Req := true; // Setting target state
}

}
// Selecting target states: set of transitions
transition from WaitTS2Req_ to WaitTS1Req [toWaitTS1Req]
transition from WaitTS2Req_ to CmdConfirm [toCmdConfirm]� �
Listing 2: GSL elements derived from the transition triggered
by a Rigel message in Listing 1.

III. INTEGRATING XSML COMPONENTS

Similarly to standalone statecharts, XSML also aims for a
deterministic behavior at the level of component integration.
Accordingly, it defines deterministic execution and communi-
cation semantics for integrated (composite) components that
feature (1) the sequential execution of contained components
and (2) their communication using immutable messages stored
in prioritized message queues. Consequently, GCL must pro-
vide a composition mode that conforms to these characteristics
and thus, we introduce the new scheduled asynchronous-
reactive composition mode as previously introduced compo-
sition modes feature parallel execution with message-based
communication (asynchronous-reactive) or signal-based com-
munication (cascade and synchronous-reactive) [7].

The examined RIS subsystem represents the realization
of the so-called Rigel protocol and comprises three compo-
nents, namely controlCenter, dispatcher and objectHandler.
Listing 3 describes the RIS subsystem model integrated in
GCL using the scheduled asynchronous-reactive composition
mode. The model has an integer parameter (Timeout) and
two ports (ControlPortIn, ControlPortOut) for the transmission
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of input and output messages defined in the Rigel interface.
The model contains the above-mentioned standalone statechart
components (the objectHandler also has a Timeout parameter)
derived from XSML models whose ports are connected using
channels to enable internal communication. Moreover, the
control ports of the controlCenter component are bound to
the external ports of the system.

The new composition mode supports a cycle-based execu-
tion mode in which components are executed sequentially.
The execution order is defined in an execution list (execute
keyword). A component can be referenced multiple times
in the execution list, allowing its multiple execution in a
single cycle. Regarding communication, the components in-
teract using immutable messages stored in prioritized message
queues. Such message queues can be defined using asyn-
chronous adapter [7] models (ControlCenter, Dispatcher and
ObjectHandler) that adapt statechart models to message-based
communication. A message queue has the following fixed
attributes: (1) stored message types, (2) priority, (3) capacity
and (4) the handling of incoming messages in case the queue is
full (discard the incoming or the oldest stored message). When
selecting a message for processing, one is always retrieved
from the highest priority non-empty queue.� �
scheduled-async RIS(Timeout : integer) [
// System ports visible from the environment
port ControlPortIn : requires Rigel
port ControlPortOut : provides Rigel
] {
// Contained components of the RIS
component controlCenter : ControlCenter
component dispatcher : Dispatcher
component objectHandler : ObjectHandler(Timeout)
// Binding the control center ports to the system ports
bind ControlPortIn -> controlCenter.ControlPortIn
bind ControlPortOut -> controlCenter.ControlPortOut
// Channels for the inter-component communication
channel [ controlCenter.PortOut ] -o)- [ dispatcher.

ControlCenterPortIn ]
channel [ dispatcher.ControlCenterPortOut ] -o)- [

controlCenter.PortIn ]
channel [ dispatcher.ObjectHandlerPortOut ] -o)- [

objectHandler.DispatcherPortIn ]
channel [ objectHandler.DispatcherPortOut ] -o)- [

dispatcher.ObjectHandlerPortIn ]
// Scheduling order of components
execute controlCenter, dispatcher, objectHandler
}� �
Listing 3: RIS model integrated in GCL using the scheduled
asynchronous-reactive composition mode.

IV. FORMAL VERIFICATION

The complete GCL model is mapped into low-level analysis
models via a sequence of internal automated model transfor-
mations that take into account the composition mode. The
analysis models can be verified with respect to manually
defined properties using model checker back-ends integrated
to Gamma. The results, i.e., whether the property holds in
the model and potentially a diagnostic trace as proof, are
automatically back-annotated to the source GCL model. Cur-
rently, UPPAAL, Theta and Spin are supported as back-ends,
which are tailored to handling different models, e.g., UPPAAL
supports timed behavior, Theta supports abstraction-based

symbolic techniques, and Spin excels at checking parallel
behavior. They also support different property specification
languages, e.g., UPPAAL supports a restricted CTL, Theta
supports reachability, and Spin supports LTL [11], providing
a good portfolio for model checking.

In order to support the exhaustive verification of industrial-
scale systems, the transformations feature several model re-
duction and slicing algorithms to reduce the state space of
models under verification. The model reduction algorithms,
which are independent of the verifiable properties and applied
on the model in itself, reduce the following model elements:

• unused variables and input events with their parameters;
• unfireable transitions, e.g., due to the lack of triggering

events or guards evaluating to constant false;
• unreachable states and regions without a functionality,

e.g., with a single simple state without entry/exit actions.
Model slicing is conducted depending on the verifiable

properties and reduce the following model elements:
• unreferenced enumeration literals;
• unreferenced variables and input events with their param-

eters that do not influence internal behavior.

V. TEST GENERATION

Test generation based on the complete GCL model utilizes
the verification functionalities presented in Sect. IV. As a
general idea, in a testing context, a diagnostic trace for a GCL
model derived during formal verification can be considered as
an abstract test case for the property based on which it is
generated, representing a test target. Thus, with the goal of
generating tests, we control model checkers in a way that they
generate diagnostic traces (abstract test cases) to cover test
targets specified as formal properties (trap properties) [12].
These abstract test cases then can be customized to different
execution environments, e.g., Java and C.

Test targets can be specified based on the following
model element based (structural), behavior- (interactional) and
dataflow-based coverage criteria:

• output event, state, transition and transition-pair (pairs
of transitions entering and leaving a certain state);

• sending (event raise) and receiving/processing (transition
triggered by the event) of an event between two commu-
nicating components;

• execution paths between the definition (def) and the
use/reading (use) of variables within standalone compo-
nents and also between communicating components.

The generated tests can be used to detect faults in component
implementations (e.g., missing implementation of transitions),
interaction of components, and improper variable definitions
and uses in system implementations.

Test targets are defined in terms of reachability properties,
which are trivial only in the case of output events and
states as these model elements can be directly referenced
from properties. In other cases, the GCL model has to be
annotated to enable describing the coverage of these criteria.
Accordingly, transition and variable def-use coverage criteria
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necessitate the injection of boolean variables indicating their
coverage, whereas transition-pair and interaction coverage
criteria require the injection of integer variables that store
the ID of the covered elements. As the number of coverable
elements can be large, the approach supports the customization
of criteria, allowing the inclusion/exclusion of components and
relevant model elements, e.g., states, transitions and ports.

In order to make test generation more efficient in terms of
time and the size of the generated test set, the approach utilizes
two optimization algorithms. After generating a new abstract
test case, the first algorithm iterates through the still uncovered
test targets and checks whether the test case also covers some
of them [12]; such test targets get discarded. After cover-
ing each test target, the second algorithm is applied, which
searches for test cases in the test set that are prefixes of other
test cases [13]. Note that such test cases can exist even when
the first algorithm is applied due to the nondeterministic order
of processing test targets. Such test cases do not contribute to
the coverage of additional criteria, and thus, can be discarded
to further reduce the generated test set.

VI. EVALUATION

We evaluated the feasibility of our test generation approach
on the integrated RIS model, focusing on test generation time
and the size of the generated test set with test optimization
in the case of full state, transition and interaction coverage.
The RIS model altogether has 22 regions, 38 states, 118
transitions, 10 variables and 13 clock variables. We set a 5ms
timeout parameter value for the model and used UPPAAL as
this back-end could manage the features of the RIS the most
efficiently in terms of execution time. Table I contains the
measurement results. We generated tests five times for each
coverage criterion; the time-related values in the table are
represented in seconds and refer to the median of these results
(the test size related values do not change in different runs).

The results show that as the coverage criterion for testing
gets finer, the number of test targets, generated tests and
contained cycles increases; apart from one case concerning
interaction coverage due to the large number of uncoverable
interactions. In addition, the average generation time for a
single test target also increases due to the complexity of
injected annotations (auxiliary variables). Nevertheless, the re-
sults show the approach is feasible for industrial-scale models,

State Transition Interaction
#Test targets 38 118 387

#Generated tests 4 26 22
#Cycles in tests 30 230 240

ΣT (s) 243 950 5377
T (s) 6.4 8.1 13.9

TABLE I: The number of test targets, generated tests and
cycles in the generated tests, as well as the median joint test
generation time and average test generation time for a single
test target in seconds for full state, transition and interaction
coverage in the integrated RIS model.

as every test target for every criterion could be handled in less
than 14 seconds on average without any complication, e.g., a
timeout or out of memory error in the process.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a formal verification and model-
based integration test generation approach for distributed con-
trollers, adapted to a real-life RIS subsystem. The adaptation
necessitated the mapping of the XSML design language and its
semantics into the internal languages of the Gamma framework
and also the introduction of a new composition mode. Based
on these extensions, automated formal verification and cus-
tomizable test generation are supported for RIS design models.
Our evaluation demonstrated the feasibility of the approach on
an existing distributed RIS subsystem using different coverage
criteria for test generation.

Subject to future work, we plan to extend the approach to
support additional execution and communication modes during
component integration, e.g., introduce shared global message
queues for components, to aid engineers in experimenting with
different integration semantics.
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Abstract—Worst-case circuit analysis is a mandatory practice
in hardware verification and validation. To this end, several
methods, including extreme value analysis (EVA) and Monte
Carlo analysis are commonly used, however, each has its own
limitations. Numerical optimization-based methods have the po-
tential to be generally usable, but have the tendency to get stuck
in a local minimum, which can be mitigated using carefully
chosen initial values. In this paper we propose methods for
automated initial value selection for black-box circuit models.
The methods are demonstrated to work on several standard test
functions, which is a first step in building an automated worst-
case circuit analysis tool.

Index Terms—worst-case circuit analysis, numerical optimiza-
tion, initial values

I. INTRODUCTION

Worst-case analysis (WCA) is an important step in hardware
design verification [1]. Because the parameters of the circuit
components can vary in production, certain circuit properties
(e.g. amplifier gain, attenuation, power dissipation, etc.) should
be analysed to make sure that parameter variation will not push
the circuit outside its limits.

For this purpose, various methods have been developed over
the years. Among them, extreme value analysis (EVA) is a
popular tool in the industry. EVA is based on the assumption
that the extreme values of circuit properties can be found on
the boundaries of parameter values, therefore by evaluating all
extreme-value combinations it is possible to find those which
result in the highest deviation from nominal circuit properties.
The drawback of EVA is that it requires 2N function evaluation
where N is the number of parameters. In addition, for some
circuits the assumption of having the extreme value at the
boundaries is not valid (see Figure 2), and thus EVA leads to
incorrect results.

Monte-Carlo-analysis is another traditional method, where
simulations are used to calculate a probability distribution
estimator for the circuit property in question. It assumes that
the circuit property is an approximately linear function of the
component values, which might be a good approximation for
many, but not for all parameters. The downsides of this method
include a large computational demand as well as the fact that
the results are not exact [2].

A more general approach to worst-case analysis is to
perform it as an optimization task [3]. After all, the goal to
WCA is to find the extreme values of a circuit property, which

can be represented as a mathematical function. Tolerances
of the component parameters can be incorporated into the
optimization problem as boundaries to the search space.

Traditional optimization methods (e.g. gradient descent,
direct methods, etc.) assume cost functions that have only
one local minimum in the search space. These algorithms
operate from a starting point, and make incremental steps
that converge to a local optimum. In some circuit analysis
problems, however, the function describing the circuit property
in question can have multiple local optima, thus global opti-
mization strategies are necessary. One approach is to sample
the function and use clustering to select candidate points to be
used as initial values and start a traditional local optimization
algorithm from all of them [4], [5]. This way there will be at
least one point from where the local optimizer can converge
to the global optimum.

An additional difficulty in circuit analysis is that functions
rarely appear in closed-form, rather than as a result of a Spice-
based circuit simulation. Therefore, we only consider black-
box functions for optimization targets, whose derivatives can
not be evaluated.

In this paper we present methods for searching appropriate
initial values for global optimization of black-box functions.

II. EXAMPLE CIRCUIT

Consider the circuit in Figure 1. The objective of the
analysis is the maximum power dissipation of transistor Q2.
The tolerances for resistors are 5% of their nominal value, the
transistors are used at temperatures between 0◦C and 40◦C
and other parameters and tolerances came from the datasheet.
The supply voltage, denoted by VCC, can be between 6 and
12 Volts, and the input voltage, marked by Uin, is allowed to
be between 0 and 5.5 Volts. The number of parameters in this
example is 14.

Using physical considerations, we have deduced that the
power dissipation of Q2 is largely dependent on the input
voltage of the circuit. The relationship is plotted in Figure 2
with all other parameters being fixed at the results of a
preliminary worst-case analysis. It should be noted that there
are two (local) maxima in this graph; at around 4 V and around
1 V, therefore global optimization is necessary.
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Fig. 1. A simple transistor-based circuit example. The property in question
is the power dissipation of transistor Q2.

Fig. 2. Dissipation of the Q2 transistor in the example. Here, we only plotted
the dissipation in terms of the input voltage, with the other parameters being
fixed.

III. METHODS FOR DETERMINING A SET OF INITIAL
VALUES

Usually, initial values are chosen based on nominal values
[3], or results of a pen-and-paper-based analysis. Another ap-
proach is to start the optimization from a random initial value.
When the optimization is performed from several random
initial values, it is likely that the optimization algorithm will
converge to the global optimum from at least one set of initial
values. The downside of using a large number of initial values
is the excessive amount of redundant computations.

Our approach of determining a set of initial values is
based on function sampling. The core idea has been used for
empirical estimation of function shape and properties [6], [7]
as well as by global optimization methods [4], [5]. The latter
sample the function in a large number of random points and
select only a few of them. Ideally, only one point is selected

Algorithm 1 Barrier search (BS) algorithm
1: Generate random sampling points: {xi} for i = 1 . . .M
2: Evaluate function in sampling points: yi = f(xi) for ∀xi

3: Make an ordered list: f(xo1) ≤ f(xo2) ≤ . . . ≤ f(xoM )
4: Add first element to output set: D = {xo1} where xo1 =

argminxi
(f(xi))

5: for all xok , k = 2 . . .M do
6: for all xdi ∈ D do
7: Define midpoint as: mi,k = (xdi + xok)/2
8: if f(xdi

) < f(mi,k) and f(xok) < f(mi,k) then
9: D := D ∪ {xok}

10: else if f(mi,k) < f(xdi
) then

11: Replace xdi in D with mi,k

12: Restart inner loop
13: end if
14: end for
15: end for

from the region of attraction around each local minimum,
because selecting more than one will lead to unnecessary
calculations in the subsequent local optimization step.

Obviously, an important condition for this approach is the
proper sampling of the function of interest: for example, if the
sample point set does not contain any points from the vicinity
of a certain local minimum, then sampling-based methods can
not find that local minimum.

IV. PROPOSED ALGORITHMS FOR INITIAL VALUE
SELECTION

Our intention in constructing our algorithms was to keep
them simple, yet at the same time use the least amount of
function evaluations at searching suitable initial values for
global optimization.

As a first step, all algorithms generate an arbitrary number
of random sampling points, xi, and evaluate the objective
function at these points: yi = f(xi). The output of each
algorithm is a set of initial values, which we denote by
D = {xd1

,xd2
, . . . ,xdK

}, where d1...K denote the indices
selected as initial values from set {xi}.

Barrier search algorithm (BS) is based on the fact that two
local minima should be separated by a barrier, i.e. there should
be an area between two local minima where the function value
is higher than any of the two minima. In practice, the condition
is checked only at the midpoint between two testpoints. The
pseudocode for BS algorithm can be found in Algorithm 1.

Convex definition check (CDC) algorithm is based on the
necessary condition for convexity: in convex areas, any line
segments connecting two points on the graph of the function
lies above the graph between the two points. In practice,
this condition is checked only at the midpoint between two
testpoints. The pseudocode for CDC algorithm can be found
in Algorithm 2.

Both the BS and CDC algorithms perform a simple prelim-
inary optimization too: if the function value at the midpoint
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Algorithm 2 Convex definition check (CDC) algorithm
1: Generate random sampling points: {xi} for i = 1 . . .M
2: Evaluate function in sampling points: yi = f(xi) for ∀xi

3: Make an ordered list: f(xo1) ≤ f(xo2) ≤ . . . ≤ f(xoM )
4: Add first element to output set: D = {xo1} where xo1 =

argminxi
(f(xi))

5: for all xok , k = 2 . . .M do
6: for all xdi ∈ D do
7: Define midpoint as: mi,k = (xdi + xok)/2
8: if f(mi,k) > (f(xdi

) + f(xok))/2 then
9: D := D ∪ {xok}

10: else if f(mi,k) < f(xdi
) then

11: Replace xdi in D with mi,k

12: Restart inner loop
13: end if
14: end for
15: end for

Algorithm 3 Local minimum definition (LMD) algorithm
1: Generate random sampling points: {xi} for i = 1 . . .M
2: Evaluate function in sampling points: yi = f(xi) for ∀xi

3: Make an ordered list: f(xo1) ≤ f(xo2) ≤ . . . ≤ f(xoM )
4: Add first element to output set: D = {xo1} where xo1 =

argminxi
(f(xi))

5: for all xok , k = 2 . . .M do
6: Find closest L points: ∥xok−xc1∥2 ≤ ∥xok−xc2∥2 ≤
· · · ≤ ∥xok − xcL∥2

7: if f(xok) < f(xci) for ∀i = 1 . . . L then
8: D := D ∪ {xok}
9: end if

10: end for

(mi,k) is lower than the function value at the point in the
output set (xdi ), then the latter is replaced by the midpoint.

The third algorithm (Local minimum definition, LMD) is
inspired by the definition of local minimum. For each sample
point, the closest N points are considered: if the tested
point has the lowest function value out of the closest L
sampling points then it is assumed to be a local minimum. The
pseudocode for LMD can be found in Algorithm 3. Note that
LMD does not need additional function evaluations besides
the initial sampling points.

V. PERFORMANCE EVALUATION

In order to compare the proposed initial value search
algorithms, we have tested them on some standard 2-
dimensional test functions [8]: sphere, inverse sphere, Rosen-
brock, Styblinski-Tang, Goldstein-Price, Booth, Matyas, Him-
melblau, Three-hump camel, and McCormick functions. The
reason for choosing these functions is that their properties are
well-known, and the functions themselves are well-behaved
and closely resemble typical physical systems that are analysed
in WCA problems.

In our tests, we have sampled the functions in 1000 random
points and used these samples for all tested algorithms. We

TABLE I
RATIO OF MISSED REGIONS OF ATTRACTION AND THE RATIO OF

DUPLICATE POINTS IN REGIONS OF ATTRACTION FOR THE
MULTIDIMENSIONAL FUNCTION EXAMPLE.

Missed regions of attraction Duplicate points in output
Dim. BS CDC LMD BS CDC LMD
2 0% 0% 0% 0% 68.8% 24.5%
3 0% 0% 0.4% 0% 82% 34.5%
4 0% 0% 1% 0% 85.5% 40.3%
5 3.6% 0.1% 3.9% 1.2% 82.1% 34.9%
6 19.7% 0.2% 16.5% 3.1% 74% 22.2%
7 38.8% 4.7% 39.5% 4.8% 60.9% 12.4%

have found that considering the closest 10 points in LMD
algorithm leads to the lowest amount of redundant initial
values. To measure performance, the number of initial values
and the total number of function evaluations were used. The
tests were performed on 30 different random point sets and
the numbers of initial values returned by each algorithm were
averaged. For finding the closest local optimum from each
initial point, we have used Matlab’s fmincon interior-point
method as local optimizer.

Figure 3 shows the ratio between the average number of
initial values returned by the algorithms and the number of real
local minima of the functions. Additionally, the performances
on the example circuit in Figure 1 are also shown. In all cases,
the local optimization converged to either of the local minima,
so a ratio of 1 means that the algorithm managed to find the
region of attraction around each local minimum. Values higher
than 1 mean that the algorithm returned more initial values
than necessary, which lead to unnecessary calculations in the
subsequent local optimization step. The BS algorithm could
not find all of the local minima of Goldstein-Price function.
This is caused by the fact that the function is relatively flat
around its local minima and so there is a significant chance
that the algorithm can not find a barrier between sampling
points.

A box plot containing the required number of function
evaluations can be found in Figure 4. It can be seen that
the CD algorithm that is based on the definition of convexity
requires more function evaluations than the other two in more
than 50% of the cases. This is caused by the large number
of initial points, as it returns all sampling points in a concave
area of the function.

Probably the most surprising is that the LMD algorithm re-
quires the least amount of function evaluations. This is because
despite returning the highest number of initial points in the
majority of the cases, it only needs to evaluate the function at
the sampling points, which in our case is 1000 points. In later
experiments we have found that this advantage diminishes as
the number of dimensions increases.

VI. MULTIDIMENSIONAL EXAMPLE

We have tested our algorithms on a scalable multidimen-
sional function too:

f(x) = −
N∑

i=1

cos(2πxi), ∀xi ∈ [0; 1], (1)
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Fig. 4. Total number of function evaluations from initial value search to found
optimum. The values contain the local optimum search too.

where x is an N -dimensional vector and xi is the ith element
of x. This function has 2N local minima at the corners of the
search space.

Table I shows the ratio of missed local minima and the
ratio of duplicate points per local minima. It can be seen that
at most 4-dimensional problems, the BS and CDC algorithms
did not miss any local minima in the search space. Over 5-
dimensional functions, the algorithms started omitting regions
of attraction. Out of three, the CDC algorithm missed the
least number of local minima. In our experiments we have
found that if the example function has at most 4 dimensions,
the BS algorithm returns exactly the same number of initial
values as the number of real local minima, while the other
two algorithms always have multiple initial points in the same
attraction regions. This problem is the most severe for the CDC
algorithm: for example, even at the two-dimensional case,
CDC returns more than three times as much duplicate points as
real local minima. The LMD algorithm also produces a large

number of duplicates, even below 5-dimensional problems too.
Based on our experiments, we suggest to use the BS algo-

rithm for searching for initial values in numerical optimization
based worst-case circuit analysis tasks.

VII. CONCLUSION AND FURTHER RESEARCH

Numerical optimization is a powerful tool in the worst-case
analysis of complex circuits. The algorithms shown in this
paper provide initial value sets suitable for global optimization
tasks.

Further research include evaluating and comparing the
performance of additional global optimization methods (e.g.
GLOBAL [5] and memetic algorithms [4]).
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Abstract—Reliability analysis of complex safety-critical sys-
tems by probabilistic model checking is often hindered by
state space explosion. Abstraction is one way to counteract this
problem. In this paper, we adapt an existing lazy abstraction
algorithm to the analysis of Markov Decision Process reliability
models and prove its soundness.

Index Terms—Probabilistic Model Checking, Markov Decision
Processes, Lazy Abstraction

I. INTRODUCTION

It is crucial to guarantee the reliable and safe operation of
safety-critical systems such as railway interlocking systems or
embedded controllers in vehicles.

Probabilistic model checking is an automatic approach
for the analysis of such quantitative properties with formal
mathematical guarantees [1]. In this paper, we focus on the
most fundamental task of safety-related probabilistic model
checking: computing the probability of reaching an error
state. If the behavior of the system under analysis includes
non-deterministic aspects, we are interested in worst-case
analysis: the probability of reaching an error state if the non-
determinism is resolved so that it maximizes this probability.
A Markov Decision Process (MDP) is able to describe the
behavior of the system if discrete-time analysis and a discrete
state space is sufficient, and the analysis of other modeling
formalisms (like Markov Automata or Probabibilistic Timed
Automata) can often be reduced to MDP analysis as well.

Practical usage of probabilistic model checking is hindered
by the state-space explosion problem: the state-space of the
MDP is often intractably large, which can be caused for
example by concurrent execution of components that depend
on each other. Abstraction is a way to counteract this problem,
and several abstraction-based techniques have been adapted to
probabilistic systems, like CEGAR [2], [3] and abstract inter-
pretation [4]. Lazy abstraction is another approach that merges
abstraction and refinement steps and applies refinement during
state-space exploration only for those abstract states where it
is necessary. It has seen success in non-probabilistic model
checking, but it has yet to find its way into the probabilistic
setting. In this paper, we adapt a lazy abstraction algorithm to
the analysis of MDP models and prove its soundness.

Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the
support provided from the National Research, Development and Innovation
Fund of Hungary, financed under the 2019-1.3.1-KK funding scheme.

II. BACKGROUND AND NOTATIONS

D(A) is the set of probability distributions over the set A.
For d ∈ D(A), a ∈ A, d(a) denotes the probability measure of
a according to d. f : A ↪→ B means that f is a partial function
from A to B, and Supp(f) denotes the set of values where f
is defined. For d ∈ D(A), Supp(d) = {a ∈ A|d(a) > 0}. δx
is a dirac distribution: δx(x) = 1,∀y ̸= x : δx(y) = 0.

a) Markov Decision Process (MDP): MDPs are low-
level mathematical models able to describe probabilistic and
non-deterministic behavior in discrete time. An MDP is a
tuple M = (S,Act, T, s0), where S is the set of states,
Act is the set of actions, T : S × Act × S −→ [0, 1] is the
probabilistic transition function satisfying ∀s ∈ S, a ∈ Act :∑

s′∈S T (s, a, s′) ∈ {0, 1} and s0 ∈ S is the initial state. An
action a ∈ Act is enabled in s ∈ S if

∑
s′∈S T (s, a, s′) = 1.

If an action a ∈ Act is enabled in s ∈ S, T (a, s) ∈ D(S)
denotes the next state distribution after taking the action a in
s, defined as T (s, a)(s′) = T (s, a, s′). The intuitive behavior
of an MDP is as follows: we start in s0, then in each step, an
action a is chosen non-deterministically from those enabled in
the current state s, and the next state is sampled from T (s, a).
A trace of an MDP is an alternating list of states and actions
s0

a1−→ s1
a2−→ s2

a3−→ . . . such that T (si−1, ai, si) > 0
for each step. If we fix a strategy for resolving the non-
determinism, the set of traces can be equipped with a prob-
ability measure: intuitively, the probability of a trace is the
product of the probability of landing in each state of the trace
after taking the action specified by the strategy in the previous
state. For a detailed formal treatment, see e. g. [1].

Given an MDP M describing the system behavior and set of
error states E, we want to compute (an upper approximation
of) the probability measure of the set of traces that involve a
state in E: P({(s0s1s2 . . . ) | ∃i ∈ Z+ : si ∈ E}). The result
is the same if we make all error states absorbing – this way,
we can restrict the analysis to finite traces.

b) Symbolic description of MDPs: Instead of explicitly
constructing the state space of the model of a complex real-life
system by hand, most such models are defined symbolically
using state variables and operations on them.

We assume that the MDP to be analyzed is given by a set of
state variables V and a set of probabilistic guarded commands
C. Each v ∈ V has an associated set Range(v) of values it
can take, and an initial value v0 ∈ Range(v). A valuation
over V is a function val : V −→ ⋃

v∈V Range(v) such that
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Fig. 1: Example of an MDP given through probabilistic guarded commands, an ARG of this MDP, and how the strong simulation
maps from MDP states to ARG nodes

∀v ∈ V : val(v) ∈ Range(v). The initial valuation of the
model is a valuation val0 such that ∀v ∈ V : val0(v) = v0.
The state space of the symbolically described MDP is a subset
of V ALV , and its initial state distribution is δval0 .

Let VALV denote the set of all valuations over V , BV
the set of all Boolean expressions over V , EvV the set of all
expressions over V that result in an element of Range(v),
and EV =

⋃
v∈V EvV . A next state assignment is a function

n : V −→ EV , such that ∀v ∈ V : n(v) ∈ EvV . Let NV denote
the set of all next state assignments for V . eval(e, val) for
e ∈ EV and val ∈ VALV is the constant resulting from
replacing each v ∈ V in e with val(v), then evaluating the
(now constant) expression. eval(n, val) for n ∈ NV is a
valuation val′ such that ∀v ∈ V : val′(v) = eval(n(v), val).
eval(d, val) for d ∈ D(NV) is the distribution d′ ∈ D(VALV)
such that d′(val′) =

∑
n∈Supp(d)|eval(n,val)=val′ d(n).

A command c ∈ C consists of a guard gc ∈ BV and a
result distribution dc ∈ D(NV). c is enabled by the valuation
val iff eval(gc, val) = True . The set of enabled actions in
each state val of the resulting MDP consists of the set of
commands enabled by val, and taking the command c results
in the distribution eval(dc, val). An example MDP can be seen
in Figure 1a. Widely used symbolic MDP description formats,
like that of PRISM [5] or the JANI [6] interchange format
can be mapped to this low-level symbolic description.

c) Abstraction: Abstraction is a successful approach to
combat state-space explosion by ignoring information that is
not needed to prove or disprove the property of interest. An
abstract model is created which conservatively approximates
the original concrete model: if the abstract model satisfies the
property of interest, then the concrete model does as well.

Abstract states are commonly described symbolically using
an abstract domain. Given a set of concrete states S, an
abstract domain D = (Ŝ,⪯, α, γ) consists of the set of
abstract states Ŝ, a partial ordering relation ⪯ ⊆ Ŝ × Ŝ, an
abstraction function α : 2S −→ Ŝ and a concretization function
γ : Ŝ −→ 2S . α and γ form a Galois connection between the
posets (2S ,⊆) and (Ŝ,⪯), meaning ∀A ∈ 2S , â ∈ Ŝ : α(A) ⪯
â ⇐⇒ A ⊆ γ(â). γ lets us treat abstract states as sets of
concrete states; we write “s ∈ ŝ” for s ∈ γ(ŝ) when γ is clear
from the context. x ⪯ y denotes (x, y) ∈ ⪯. Ŝ has two special
elements: ⊤ and ⊥ satisfying γ(⊤) = S, γ(⊥) = {}.

For checking safety properties in the qualitative case, the

conservative direction is to overapproximate the set of reach-
able states: a transition from ŝ ∈ Ŝ to ŝ′ ∈ Ŝ is possible
iff ∃s ∈ ŝ, s′ ∈ ŝ′ : a transition exists from s to s′. For the
probabilistic setting, this changes to the requirement that the
probability of reaching an error state in the abstract model
must be at least as high as in the concrete one, which we will
prove for the proposed algorithm.

The lazy abstraction algorithm needs an abstract domain
for S = VALV , for which we assume the existence of some
operations. The algorithms in this paper are domain-agnostic
as long as these can be computed. As an example, the explicit
value domain satisfies these requirements.

For a ∈ NV and ŝ ∈ Ŝ, eval(a, ŝ) ∈ Ŝ is
the abstract post operator computing the result of apply-
ing a next state assignment in the abstract state space:
eval(a, ŝ) = α({eval(a, s)|s ∈ ŝ}). For b ∈ BV , eval(b, ŝ) ∈
{True,False,Unknown} denotes evaluating b in the abstract
state space: True if b evaluates to True for all s ∈ ŝ, False
if b evaluates to False for all s ∈ ŝ, otherwise Unknown .

We assume the existence of a block operation: for an abstract
state ŝ ∈ Ŝ, a Boolean expression b ∈ BV and a concrete
state s ∈ ŝ such that eval(b, s) = False , ŝ′ = block(ŝ, b, s)
is an abstract state satisfying ŝ′ ⪯ ŝ, s ∈ ŝ′, eval(b, ŝ′) =
False . The goal of the operation is to compute a new abstract
state by removing at least those states from ŝ which satisfy b
(potentially others as well, when the domain is not granular
enough) while making sure to keep s.

We need to be able to represent the abstract states as
Boolean expressions in the sense that for each ŝ ∈ Ŝ a bŝ ∈ BV
must exist such that ∀s ∈ S : eval(bŝ, s) = True ⇐⇒ s ∈ ŝ.

A successful approach to implement abstraction-based
model checking is using abstraction-refinement methods: start-
ing from a very coarse abstraction and introducing further
information as the verification progresses until we can prove
satisfaction or violation of the requirement.

d) Lazy abstraction: The main idea behind lazy abstrac-
tion is on-demand refinement of the abstract states during ab-
stract state space exploration. We selected the lazy abstraction
method described in [7] to apply to MDP model checking.

It builds an Abstract Reachability Graph (ARG) with each
node labeled by both a concrete state and an abstract state:
the concrete state is assumed to be able to represent all other
states in the abstract state with respect to the enabled actions
until this is disproven. The abstract labels are originally very
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coarse and are refined when needed. Covering edges are used
to denote that the traces starting from a node cover all possible
traces from another node – paths from the covered need not
be explored. When an action is enabled in at least one element
of the abstract label of a node, but not in the concrete label,
the abstract label is strengthened: states where the action is
enabled are blocked out of it. This operation can trigger other
strengthenings.

If all enabled actions in all non-covered ARG nodes have
been explored, the algorithm stops. The ARG overapproxi-
mates the concrete state space: for all reachable concrete states,
there is a node whose abstract label contains it.

III. APPLICATION OF THE LAZY ALGORITHM TO MDPS

In this section we adapt the lazy algorithm to analyzing a
symbolic MDP given by a variable set V and a command set
C0. Given an error state formula ϕ ∈ EV , the goal of the anal-
ysis is to compute the probability of reaching a state s where
eval(ϕ, s) = True . We show that the abstraction is sound for
safety properties in the sense that the error probability in the
abstract model overapproximates the concrete probability.

We assume that an abstract domain (Ŝ,⪯, α, γ) has been
selected. The set of commands is extended with an error
command: C = C0∪{(ϕ, δid)}, where id is an assignment that
does not change any variable. This ensures that the finished
ARG contains a node labeled with an error state exactly if an
error state is reachable in the concrete state space.

The lazy abstraction algorithm explores the abstract state
space by building an ARG: a tuple (N,ET , EC , Lc, La),
where N is a set of nodes, ET ⊆ N × C × D(N) is a set
of transition “edges” from nodes to node distributions labeled
with commands, EC ⊆ N × N is a set of directed covering
edges, Lc : N −→ VALV is the concrete labeling function,
La : N −→ Ŝ is the abstract labeling function.

The ARG is well-formed if it satisfies the following cri-
teria: a1) abstract label contains the concrete label: ∀n ∈
N : Lc(n) ∈ La(n), a2) concrete label can represent the
whole abstract label with respect to the enabled commands:
∀n ∈ N : ∀c ∈ C : eval(gc, Lc(n)) = False =⇒
eval(gc, La(n)) = False , b1) commands labeling a transition
edge are enabled in the concrete state of the source: ∀(n, c, ·) ∈
ET : eval(gc, Lc(n)) = True , b2) there is a probability-
preserving bijection f between nodes at the end of a transition
edge and the assignments of the command labeling the edge
which respects the result of the assignment (further explained
below): ∀(n, c, de) ∈ ET : ∃(f : Supp(dc) ←→ Supp(de)) :
∀a ∈ Supp(dc) : eval(a, Lc(n)) = Lc(f(a)) ∧ dc(a) =
de(f(a)) ∧ eval(a, La(n)) ⪯ La(f(a)), c1) abstract label
of covering node must contain concrete label of covered
node: ∀(n, n′) ∈ EC : Lc(n) ∈ La(n

′), c2) covering node
must be at least as abstract as the covered node: ∀(n, n′) ∈
EC : La(n) ⪯ La(n

′). c3) covering node cannot be covered:
∀(n, n′) ∈ EC : ¬∃(n′, n′′) ∈ EC .

An example ARG can be seen in Figure 1b. To make b2)
easier to understand, let us see how it is satisfied in this
example for the C1 edge of node n0. Intuitively, it means that

the distribution at the end of the edge results from applying
the command to the source node of the edge. The nodes at the
end of this edge and their probabilities are n1 with 0.2 and n2

with 0.8. The assignments of this command are A1 assigning
y+1 to y and x to x, and A2 assigning x+1 to x and y to y.
The probability of A1 is 0.2, that of A2 is 0.8. The bijection
f that makes b2) satisfied maps A1 to n1 and A2 to n2.
Considering first A1, this mapping is probability preserving:
dc(A1) = de(n1) = 0.2, it respects the assignments for
the concrete labels: eval(A1, Lc(n0)) = Lc(n1), and also
for the abstract labels: eval(A1, La(n0)) ⪯ La(n1). Each of
these also holds for A2. In the lazy abstraction algorithm, the
abstract label of a node can be coarser than the exact result of
applying the post operator to its ancestor as long as all other
constraints are satisfied.

The algorithm starts with an ARG with a single node
n0, Lc(n0) = val0, La(n0) = ⊤. We extend this to a well-
formed ARG where all nodes are either covered or fully
expanded using expansion, covering and strengthening op-
erations. If a node n ∈ N is selected for expansion, we
check for each c ∈ C whether eval(gc, Lc(n)) = True . If
so, a new node n′

i is created for each ai ∈ Supp(dc) with
Lc(n

′
i) = eval(ai, Lc(n)), La(n

′
i) = ⊤, and a transition

edge (n, c, de) is created such that de(n
′
i) = dc(ai) for

i = 1 . . . |Supp(dc)|. For each newly created node n′, we
check whether ∃nc ̸= n′ ∈ N : Lc(n

′) ∈ La(nc) such that nc

is not covered, and if so, a covering edge (n′, nc) is created
for such an nc and La(n

′) is strengthened. If this leads to a
violation of well-formedness constraint b2), then n has to be
strengthened as well.

If eval(gc ,Lc(n)) = False , then we compute
eval(gc, La(n)). If False , we move on to the next command
or node. However, if it is true or Unknown , then a2) is
violated, and La(n) needs to be strengthened.

Whenever the value of La(n) is changed for some node
n ∈ N , the well-formedness constraints can be violated.
If c1) is violated, the problematic covering edge is simply
removed from EC . Other constraints can then be restored by
strengthening the abstract labels of nodes related to n: La(n)
is replaced by some ŝ′ such that ŝ′ ⪯ La(n) and at least one
well-formedness violation is eliminated.

If a2) is violated by a node n because of a command c that is
enabled somewhere in La(n) but not in Lc(n), a new abstract
label can be computed as ŝ′ = block(La(n), gc, Lc(n)).
Because of the contract of block, eval(gc, ŝ

′) = False , so
this command no longer causes a constraint violation.

If c2) is violated by some covering edge (n, n′) ∈ EC , but
c1) still holds for these nodes, then the current La(n) must
be replaced with ŝ′ such that Lc(n) ∈ ŝ′, ŝ′ ⪯ La(n

′) and
ŝ′ ⪯ La(n) (referring to the current La). By describing La(n

′)
as a Boolean expression bc, we can compute an appropriate ŝ′

as block(La(n),¬bc, Lc(n)).
Now assume that b2) is violated by an edge (n, c, d).

Because of how the ARG is constructed, this means that a
bijection f mentioned in the constraint could be constructed if
we ignored the constraints on La, but the La part is violated by
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some state. Let us construct such a bijection f ignoring the La

part. There exists an a ∈ Supp(dc) such that eval(a, La(n)) ⪯̸
La(f(a)). By representing eval−1(a, La(f(a))) as a Boolean
expression b and changing La(n) to block(La(n), b, Lc(n)),
the violation caused by the assignment a is eliminated. As the
abstract label of n became finer, this might trigger another
strengthening, which can propagate back up until the root
node. Efficient implementations of the algorithm can use
sequence interpolation to compute the strengthening of the
whole path up to the root at once [7].

Strengthenings can create new violations triggering another
strengthening, but all violations are eliminated after finite
steps, and we continue expanding non-covered nodes.

The finished ARG can be treated as an MDP
(N, C, TARG , n0). Its transition function TARG is defined
as follows. For a non-covered node n, a command c ∈ C
is enabled if there is an edge (n, c, d) ∈ ET in the
ARG, and TARG(n, c) = d. For a covered node n,
let n′ denote its covering node (so (n, n′) ∈ EC). A
command c ∈ C is enabled in n iff it is enabled in n′, and
TARG(n, c) = TARG(n′, c). As the covering node cannot
be covered, TARG is a well-defined function. Intuitively, we
merge covered nodes into their covering nodes.

We prove the soundness of this abstraction using the notion
of strong simulation of MDPs, similarly to how the soundness
of another MDP abstraction algorithm was proven in [8].
It was shown in [9], that strong simulation preserves the
safety subset of Probabilistic Computation Tree Logic (PCTL)
properties [9], [10], meaning that whenever a strong simulation
relation exists from an MDP M1 to another MDP M2, then
the satisfaction of a safe PCTL property ϕ for M2 implies
the satisfaction of ϕ for M1. As probabilistic reachability
properties are a subset of safe PCTL, the soundness of our
algorithm can be proven by constructing a strong simulation
relation R ⊆ S ×N from the original MDP to the ARG.

Given two distributions d1 ∈ D(S1), d2 ∈ D(S2) and
a relation R ⊆ S1 × S2, ∆ : S1 × S2 −→ [0, 1]
is a weight function if: ∆(s1, s2) > 0 implies s1Rs2,
∀s1 ∈ S1 :

∑
s2∈S2 ∆(s1, s2) = d1(s1) and ∀s2 ∈ S2 :∑

s1∈S1 ∆(s1, s2) = d2(s2). The existence of a weight func-
tion between d1 and d2 for a relationR will be denoted d1 ⊑R
d2. Given two MDPs (S1, Act, T 1, s10) and (S2, Act, T 2, s20),
a relation R ⊆ S1 × S2 is a strong simulation relation if
i) s10Rs20, ii) ∀(s1, s2) ∈ R : ∀a ∈ Act enabled in s1 :
a is enabled in s2 ∧ T 1(s1, a) ⊑R T 2(s2, a).

The relation that we use is given by R = {(s, n)|s ∈
La(n)}. s0Rn0, as Lc(n0) = s0 implies s0 ∈ La(n0), so
the starting states are related, i) holds. For all (s, n) ∈ R if
n is not covered, then from s ∈ La(n), a2) (Lc(n) represents
the whole La(n)) and the finishedness of the ARG (there is
a transition edge labeled with c for each command enabled
in Lc(n)) follows that all commands enabled in s are also
enabled in n. A similar reasoning holds if n is covered
by n′, with the addition that s ∈ La(n

′) because of c2).
Let s, n and c be any fixed concrete state, ARG node and
command respectively from now such that (s, n) ∈ R and

c ∈ C is enabled in s. Now we need to show the existence
of weight function ∆ between eval(dc, s) and TARG(n, c).
There is an edge (n, c, d) ∈ ET if n is not covered, and
(n′, c, d) ∈ ET if n′ covers n. Let f be a bijection mapping the
assignments of c to Supp(d) that makes b2) true for this edge.
Let si = eval(ai, s) and di = dc(ai) for each assignment
ai of c. As s ∈ La(n), si ∈ eval(ai, La(n)). If n is not
covered, we have from b2) that eval(ai, La(n)) ⪯ La(f(ai)),
so si ∈ La(f(ai)). If (n, n′) ∈ LC , La(n) ⪯ La(n

′) from c2)
implies eval(ai, La(n)) ⪯ eval(ai, La(n

′)) ⪯ La(f(n)), so
si ∈ La(f(n)) in this case as well. This means that siRf(ai)
for each i. Now let us set ∆(si, f(ai)) = di for each i, and let
∆ be zero everywhere else. As siRf(ai), the first condition of
weight functions is satisfied. The second and third conditions
are satisfied as the only non-zero element of the sum in both
cases is exactly di = eval(c, s)(si) = TARG(n, c)(ni). This
proves the existence of a valid weight function, which com-
pletes the proof of R being a strong simulation relation. From
Thm. 19 in [9], it follows that if a probabilistic reachability
property holds in the ARG, it also holds in the original MDP,
which completes our proof. Figure 1c visualizes the relation.

As this relation is not a bisimulation, a problem with this
abstraction is that the computed error probability on the ARG
is only an overapproximation, and we have no control over
how close it is to the concrete model. To make more precise
error probability computation possible, we need to introduce
an option to refine the ARG further on demand. We aim to
address this issue in our future work.

IV. CONCLUSIONS

We have shown that the lazy abstraction scheme of [7] is
applicable to symbolic MDPs and gave a formal proof of
its soundness. We have shown a shortcoming of the direct
adaptation in that it cannot be further refined. We plan to
address this issue in the future by developing a variant based
on stochastic games. This work is currently in its theoretical
phase, implementation of the proposed algorithm is in progress
in the THETA model checking framework.
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Abstract—The resonator-based observer has been developed
for measuring the harmonic components of a periodic signal
with known fundamental frequency. In certain applications, the
signal to be processed is sparse in the frequency domain: a subset
of its harmonic components have negligible amplitude. This
paper presents some extensions of the resonator-based observer
which can exploit this sparsity to speed up the convergence.
The performance of the proposed structures is demonstrated by
simulation examples.

Index Terms—periodic signals, order tracking, sparsity, con-
vergence speed

I. INTRODUCTION

In many applications, periodic signals are analyzed. Measur-
ing their harmonic components is also known as order tracking
[1]. Examples are active noise control, vibration analysis of
rotating machines or line voltage harmonic analysis.

This problem can be approached in a model-based way.
When the fundamental frequency is known and constant, the
resonator-based observer (RBO) [2] is an adequate solution.
The basic RBO has been already extended in multiple different
ways. For unknown or changing fundamental frequency, the
Adaptive Fourier Analyzer has been developed [3]. Another
extension is the ability to handle missing samples [4].

Generally, a signal is said to be sparse if there is a basis in
which it can be described with only a few nonzero coefficients.
The notion of sparsity can be applied to periodic signals
as well: strictly, it would mean that the majority of the
Fourier coefficients are zero. In this paper, we will be more
concessive: by sparse we mean that a non-negligible subset of
the coefficients have (approximately) zero amplitude.

Trivial examples for sparse periodic signals are a pure sine
wave, or a square wave with 50% duty cycle. A more practical
example is the vibration caused by a ventilator: e.g. if it
has five blades, then the 5th, 10th, 15th, . . . components are
expected to have significantly more power.

In this paper we present some extensions of the RBO which
are able to exploit the sparsity of their periodic input signal
in order to speed up the convergence. The core idea is to

Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the
support provided from the National Research, Development and Innovation
Fund of Hungary, financed under the 2019-1.3.1-KK funding scheme.

select those components which are presumably negligible, and
exclude them from the main structure. The main characteristics
of the structures are illustrated by simulations.

The structure of the paper is as follows: Section II reviews
the RBO, while the proposed structures are presented in
Section III. Section IV shows some examples, and the paper
concludes in Section V.

II. PRELIMINARIES

A. Conceptual Signal Model
The so-called conceptual signal model is the complex

Fourier series of a periodic signal:

d =
∑L

k=−L xk xk = Xkck ck = ej2πf1kn (1)

for k =−L, . . . , L, where Xk is the kth Fourier coefficient,
xk is the corresponding Fourier term, j =

√
−1, f1 is the

fundamental frequency (relative to the sampling frequency),
and n is the time index. In order to keep the notation clear,
explicit time indices will not appear unless necessary.

Note carefully the difference between Xk and xk. Xk is
a Fourier coefficient, which is constant for a given periodic
signal, while xk is obtained by rotating Xk according to the
frequency of the component and the time index.

The components are modeled up to the Nyquist frequency,
thus Lf1 < 0.5 < (L+1)f1. The lack of modeled component
at the Nyquist frequency poses no problem in practice.

Figure 1 depicts the conceptual signal model. The blue box
is a block definition for further use. Each integrator also has
a uk update signal:

Xk (n+ 1) = Xk (n) + uk (n) (2)

B. Resonator-Based Observer
The RBO is obtained by designing a state observer for the

conceptual signal model. As the state variables are the Fourier
coefficients, the observer estimates them directly. The observer
can be described by the following equations:

y =
∑L

k=−L x̂k x̂k = X̂kck e = d− y uk = α
N gke (3)

gk = c̄k = e−j2πf1kn (k = −L, . . . , L) (4)
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Fourier
Components (FC)

Fig. 1: The conceptual signal model. The blue box and its
signals define the Fourier Components (FC) block and its
interface for further figures. The equations in Section II-A
use the Xk and xk notation, all other equations and figures
use the X̂k and x̂k notation.

FC

Reciprocal Updater (RU)

Fig. 2: The resonator-based observer. The blue box defines the
Reciprocal Updater (RU) block for further figures. The thick
line represents a vectorial signal. This convention is kept in
further figures.

where y, e and d are the estimated input, error and input
signals, respectively. X̂k and x̂k are the estimates of the kth
Fourier coefficient and term, respectively, 0<α≤1, N=2L+1
is the number of modeled coefficients, gk is a reciprocal
complex exponential and ·̄ denotes the complex conjugate.

The RBO is illustrated in Fig. 2. Here we define the Recipro-
cal Updater (RU) block. The modulation-demodulation scheme
realized with ck and gk can falsely imply that the RBO is time
variant. An equivalent formalization places the modulator-
demodulator pair “inside” the integrator [5], which is clearly
a time invariant system. These two equivalent formalizations
also exist for the proposed structures.

In steady-state, the estimated and the original Fourier-
coefficients are equal, thus the signal is perfectly reconstructed.
The observer provides unbiased estimates of the Fourier coef-
ficients [2].

If 0<α<1, the Fourier coefficient estimates are exponen-
tially averaged [6] with an equivalent time constant of

β = 1− (1− α)
1
N (5)

We can see in (5) that for smaller N , the settling is faster,
since there are less parameters to adapt.

For β small enough (which is usually granted in practical
cases) the RBO is able to work over an arbitrary frequency
set with similar convergence characteristics [6]. The “rows” in
Fig. 2 (from uk to x̂k for a given k) are also called channels.
Each channel corresponds to a single harmonic component.
The magnitude response of any channel (from d to x̂k) is [6]

|Hk (f)|




= 1 at the own frequency of the channel
= 0 at the frequencies of other channels
> 0 at any other frequency

(6)

These relationships are illustrated for two cases in Fig. 3 (for
x̂2). The blue line corresponds to a full RBO with f1 = 1

15 ,
α = 1. The 3rd and 6th components have been removed from
this structure for the red line.
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Fig. 3: Magnitude response of a single channel (from d to x̂2,
on the interval [−fs/2, fs/2]). Blue line: full RBO with 15
channels. Red line: RBO with arbitrary frequencies.

MAFC
RU

Component Selection Logic

RU

Fig. 4: RBO with significant component selection. The main
loop is drawn with black, while the auxiliary loop is depicted
in gray color.

III. THE PROPOSED STRUCTURES

A. Concept
Let us consider a strictly sparse periodic signal and process

it using the original RBO. In steady-state, there will be
channels whose state variable will be zero. Removing them
would have no effect on the estimated signal.

During the settling (with 0 < α < 1), each coefficient
estimate (approximately) exponentially tends to their steady-
state value. Assuming arbitrary initial state, after some time
the magnitudes of the nonzero (zero) coefficient estimates will
be significant (negligible).

The idea is to automatically distinguish between the signif-
icant and the negligible coefficients and their corresponding
channels. Since the input can be described with only the
significant coefficients, keep only them and drop the negligible
ones from the main adaptation loop. Consequently, the main
loop will contain less channels, which results in a faster
convergence.

Moreover, it is conceivable that over time, the coefficients of
the input signal change, some zeros become nonzeros or vice
versa. Thus, the negligible components should not be dropped
totally from the structure, but placed in an auxiliary loop and
adapted there. If any of them becomes large enough, they can
be placed back into the main loop.

B. Formalization
The basic proposed structure (Fig. 4, it will be referred as

CSL+RU) can be described by formalizing the above ideas.
There are two new blocks: the Component Selection Logic
(CSL) and the Multiplexed Adder (MA).

Let us define the selection indicator for k = −L, . . . , L:

Sk =

{
1 if the kth component is significant
0 if the kth component is negligible

(7)
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(a) Multiplexed Adder (MA)

FCRU

(b) Error Decomposition Updater
(EDU)

Fig. 5: Block definitions for the proposed structures

The Component Selection Logic provides this indicator along
with the N∗ =

∑k=L
k=−L Sk number of selected components.

An MA (Fig. 5a) is used to calculate the y and y0 output
signals of the main and auxiliary loops, respectively:

y =
∑L

k=−L x̂kSk y0 =
∑L

k=−L x̂k (1− Sk) (8)

The two error signals are

e = d− y e0 = e− y0 (9)

The update signals of the two loops can be expressed in one
equation:

uk = α
N∗Skgke+

α
N (1− Sk) gke0 (10)

Note that the definition of Sk implies that the state variables
are updated separately.
C. Discussion

The main loop is an RBO with an arbitrary (but special) fre-
quency set. Since N∗ ≤ N , the convergence is faster than that
of the original RBO. If the user knew which components are
significant, he could use a traditional RBO with frequencies
set to those components. The main novelty of this approach
is that it detects the orders of significant components without
user interaction. Moreover, the increase in convergence speed
is independent from the orders of the significant components.
They can be arbitrarily grouped or scattered over the spectrum.

For noise suppression in the main loop, the results of [6]
apply, with N∗ instead of N in the formulas. The variance
of a given significant coefficient is inversely proportional to
N∗ (this variance is not less than in the original RBO). As a
consequence, the summed variance of the coefficients in the
main loop (which is related to the variance of y by Parseval’s
theorem) is approximately independent of the sparsity. In other
words, the noise bandwidth from d to y is the same as that of
in the original RBO.

In Fig. 4 the auxiliary loop is drawn as running on the error
signal. An equivalent point of view is that the output of the
auxiliary loop contains all channels and its input is d, not e.
This is the reason this loop uses N in the update equation.
D. Component Selection Logic

The responsibility of the CSL is to provide the selection
indicator, i.e. distinguish between the significant and the negli-
gible components. In this paper, we take a simple thresholding
approach. This threshold can be a fixed value, given a priori, or
it can be dynamic, e.g. based on the coefficient with maximal
magnitude:

Sk =

{
1 if |X̂k| ≥ γ|X̂|max
0 else

(11)

MAFC
EDU

Component Selection Logic

EDU

Fig. 6: The proposed structure with error signal decomposition

where 0 < γ ≪ 1. Hysteresis can be used in order to eliminate
the “juggling” of components between the two loops.
E. Error Signal Decomposition

Let us consider the case when besides the significant com-
ponents, there are small (but not zero) ones in d, and they
do not get selected. Alternatively, let us consider the effect of
selection errors.

Let one not selected nonzero component be the ith one and
let us examine its effect on the kth (selected) component. The
magnitude response of the main loop has the characteristics
outlined in (6). Consequently, |Hk (fi)| > 0. This means
that the not selected component at fi causes an error in the
measurement of the selected component at fk.

For a particular example, let us take the case depicted with
the red line in Fig. 3 and consider the effect of the not
selected nonzero 3rd component on the selected 2nd one. Since
|H2 (f3)| ≈ 0.25 > 0, this component at f3 causes an error in
the measurement of the selected component at f2.

Thus the not selected nonzero components cause some error
in the measurement of the selected components. As a result,
the selected components do not vanish entirely from e. With
a similar reasoning one can see that in this case the precision
of the auxiliary loop is also impaired.

This problem can be solved via the decomposition of the
error signal. The structure is modified slightly: instead of the
RU blocks, an Error Decomposition Updater (EDU, Fig. 5b)
is used in both loops (Fig. 6). The EDU is a full RBO run on
e with α = 1, and the Fourier coefficient estimates are taken
as update signals. This variant will be referred as CSL+EDU.

Since the EDU is a full RBO, its magnitude response
from e to uk is characteristically same as the blue
line in Fig. 3, regardless of the actual selection. Now
|Hk (fi)| = 0 (i ̸= k, i = −L, . . . , L), thus the not selected
nonzero components do not cause error in the measurement
of the selected ones. For our particular example, the blue line
in Fig. 3 has a zero at f3, thus no component appears in u2.

Since there is a new feedback loop inside the main loop, the
α
N∗ gain of the main loop cannot get as large as for CSL+RU.
In our experience, an upper bound of α

N∗ ≤ 1
N yields similar

convergence to the CSL+RU.

IV. EXAMPLES
The examples model the measurement of the significant

harmonic components of the line voltage. As such, the input
signal will have 50 Hz frequency, sampled at 5 kHz. The
fundamental component has a magnitude of 1 and there is
no bias. The examples will differ in the higher harmonics.
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(a) Relative squared error of the fundamental component
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(b) Squared error signal
Fig. 7: Measurement errors by the time index for strictly sparse
signals, averaged from 100 simulations

A. Strictly Sparse Signal
In the first example, the input signal is strictly sparse.

In the beginning, the even harmonics are zeros, while the
odd ones have a random magnitude drawn uniformly from
[0.05, 0.1] and a random phase. After 4000 samples, the
harmonic components change: the odd ones become zeros and
the even ones up to the 20th order get a random magnitude
and phase the same way as the even ones before. There is an
additive white Gaussian noise on the input, with 60 and 80 dB
SNR in the two signal parts.

This signal is processed using the original RBO, CSL+RU
and CSL+EDU. All structures use α = 0.35. The CSLs are
operated by (11) with γ = 0.02, 4 times per signal period.
100 such simulations were conducted. The averaged relative

squared error of the fundamental component is shown in
Fig. 7a. Both proposed structures are able to speed up the
convergence. Although there is an upper bound on the feed-
back gain of CSL+EDU, it was even faster than the CSL+RU.
This acceleration depends also on the sparsity of the signal: the
less components a signal has, the faster the convergence is for
the proposed structures (the error of the proposed structures
decays faster for the sparser signal part; the RBO is unaffected
by the sparsity). The proposed structures have only slightly
worse steady-state error than the RBO, due to their larger noise
bandwidth.

The error signals (Fig. 7b) show the same convergence char-
acteristics as the selected component estimates. Moreover, the
steady-state reconstruction error is the same for all structures.

At the signal change point, the fundamental component is
unchanged. As a result, its error jumps only because the other
components affect it during the transient. After such an abrupt
change in the Fourier coefficients, some time is needed for
the CSL to actualize the selection (since the corresponding
component estimates need to change). During the settling,
some channels may be placed back and forth multiple times.
B. Effect of Small Components

The second example illustrates the effect of the small
components. The input signal has the same parameters as in
the first half of the previous example, with one exception: the
small components are not zero, but have a magnitude drawn
independently from a normal distribution with zero mean and
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Fig. 8: Measurement errors by the time index for for signals
with significant and small components, averaged from 100
simulations.

0.01 standard deviation, and a random phase. The structures
and their parameters are the same as before.

Again, results from 100 simulations were averaged to obtain
the results. For the fundamental component estimate (Fig. 8a),
CSL+RU has a significantly higher error than the other struc-
tures, the original RBO included: the not selected nonzero
components cause an error in the selected ones. CSL+EDU
has only slightly worse error than the RBO, due to its larger
noise bandwidth. Moreover, as in the previous example, the
proposed structures have faster convergence.

It is not surprising that CSL+RU has a higher steady-state
reconstruction error than the RBO (Fig. 8b). But one could
expect the CSL+EDU to have significantly lower error than the
CSL+RU. This is unfounded though: even when all selected
components are measured perfectly, the error signal of the
main loop contains all the small components by design.

V. CONCLUSION

This paper presented two structures to improve the conver-
gence speed of the RBO for sparse periodic signals. After
reviewing the original RBO, the proposed structures have
been presented. The core idea is to automatically separate the
significant and negligible components, and measure only the
significant ones in the main loop Little additional complexity
is required: parallel and/or series connected resonators, adders,
switches and some control logic. Since this way there are fewer
parameters to adapt, the convergence becomes faster. The
properties of the proposed structures were demonstrated with
simulation examples: they converge faster than the original,
and the speed depends on the sparsity of the input. Using
error signal decomposition, the left out nonzero components
cause no error in the measurement of the selected ones.
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Abstract—The theory of discrete Gabor transforms provides
a constructive and interpretable way of creating biorthogonal
transforms. These transforms can achieve a non-uniform fre-
quency resolution and they can be implemented recursively
by observers based on Hostetter’s approach. The dead-beat
property of the observers were previously shown for coherent
signals with the help of an adequately chosen conceptual signal
model. This paper investigates the properties of the signal model-
observer pair and derives the dead-beat property in the case of
noncoherent signals based on a modified signal model.

Index Terms—signal processing, Gabor transform, observer,
dead-beat property

I. INTRODUCTION

The usage of signal transforms is widespread in digital
signal processing (DSP) algorithms due to their ability to
emphasize and quantify relevant signal properties. In the case
of the discrete Fourier transform (DFT) this is achieved by
a purely frequency domain representation. In certain DSP
methods this might prohibit the use of DFT due to the lack of
time domain transient information.

To circumvent the issue one could use (the discrete variant
of) the short-time Fourier transform (STFT) which, in essence,
is the DFT of (possibly overlapping) segments of the original
signal acquired by sliding a window through it. This leads
to a so-called time-frequency representation. It is natural to
ask what is the temporal and frequency resolution of this
description. For an answer it is beneficial to interpret said
transforms as filter banks because their temporal resolution is
in connection with the decimation rates of the filters while the
frequency resolution is described by their bands.

Another question that arises in connection with time-
frequency representations is whether they provide sufficient
information to reconstruct the original signal, phrased differ-
ently, whether the underlying transformation is invertible. The
answer can be formulated with the toolset of frame theory
[1] which is suitable to lay the foundations of nonstationary
Gabor frames [2]. These provide the basis of transforms whose
frequency resolution can be chosen almost arbitrarily (e.g.
logarithmically), which is practical for audio applications.
Based on these it is relatively straightforward to construct
biorthogonal transforms [3] and this property enables a re-
cursive implementation by observers based on Hostetter’s
approach [4]. The realization of the transforms is possible with
filters, but they cannot reconstruct noncoherent signals while
observers can which is proven by this paper.

Section II reviews the construction and specification of the
relevant generalization of discrete Gabor transforms while in
Section III the conceptual signal models and their observer
and it’s relevant properties are presented. Section IV contains
the derivation of the dead-beat property in case of noncoherent
signals while Section V concludes the paper.

II. DISCRETE GABOR TRANSFORM

Frames can be thought of as the set of (possibly linearly
dependent) signals whose weighted sum could reproduce an
arbitrary signal of a space. For example, in the case of the
Fourier series these signals are complex exponentials and
their linear combinations can reproduce periodic signals. The
transform coefficients are exactly the weighting coefficients.

The frequency adaptive painless biorthogonal nonstationary
discrete Gabor transforms [3] are an alternative to the DFT.
These transforms can be chosen with near arbitrary frequency
resolution unlike the DFT which has a linear one. In practical
terms their construction is carried out based on the frequency
domain specification of a finite impulse response (FIR) filter
bank. The passbands of the filters cannot overlap based on
their N point DFT, where N is the length of the FIR filters.
If the number of the bands is L then l = 0, · · · , L − 1 al
decimation parameters should be chosen satisfying

al ≤
N

Nl
and

L−1∑

l=0

1

al
= 1, (1)

where Nl is the length of the support of the respective
passband. Furthermore al and N/al must be integer for all l.

Given that these conditions hold the resulting transform will
be biorthogonal with the following reciprocal basis:

G =




g̃T
0 ⟨0 · a0⟩

g̃T
0 ⟨1 · a0⟩

...
g̃T
0 ⟨(N/a0 − 1) · a0⟩

g̃T
1 ⟨0 · a1⟩

...
g̃T
L−1⟨(N/aL−1 − 1) · aL−1⟩




, (2)

where g̃l ∈ CN are the impulse responses of the FIR filters
and v⟨p⟩ denotes the circular shift of the v vector by p. The
square matrix G represents the reciprocal basis, while the basis
is the transpose of it’s inverse due their biorthogonality.
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Fig. 1: Conceptual signal models.

III. A COMMON STRUCTURE FOR RECURSIVE DISCRETE
TRANSFORMS

A. Conceptual Signal Models

The conceptual signal model [4] is a linear system whose
y[n] output is acquired by the summation of ck[n] basis vectors
weighted by xk[n] state variables. The total number of the
basis vectors is K. They are periodic by definition with period
N and their values are given on the n = 0, · · · , N − 1
timesteps so for any n ∈ Z

ck[n] = ck[mod (n,N)], (3)

where mod (n,N) is the positive remainder of the integer
division n/N . This periodic extension is assumed for the
g[n] and e[n] signals introduced later in the article. In this
setting with constant x[n] state variables it is possible to
construct all discrete signals with period N with the choice
of a biorthogonal basis which enforces the equality N = K.
These periodic signals can be referred to as coherent signals
and their conceptual signal model is shown on Fig. 1a.

Let’s denote

x[n] =
(
x0[n] x1[n] · · · xK−1[n]

)T
, (4)

c[n] =
(
c0[n] c1[n] · · · cK−1[n]

)T
. (5)

This means that the output is

y[n] = cT [n]x[n]. (6)

Appendix A proves that arbitrary, noncoherent signals can be
constructed if x[n] is not constant and gives a constructive
way of choosing it’s value to achieve a desired y[n] output.
But in order to modify x[n] the conceptual signal model must
be extended with inputs shown on Fig. 1b. Assuming that x[n]
is known for any n ∈ Z it is straightforward to construct an
u[n] input which modifies x[n] accordingly:

u[n] = x[n+ 1]− x[n] = g[n+ 1]y[n+ 1]− g[n]y[n], (7)

where g[n] is the reciprocal basis introduced in the following
section.

z−1+ ××

z−1+ ××

z−1+ ××

++

x̂0[n]

c0[n]g0[n]

x̂1[n]

c1[n]g1[n]

x̂K−1[n]

cK−1[n]gK−1[n]

y[n]

−

ε[n] ŷ[n]

Fig. 2: An observer for recursive transformations.

B. Observer

The state variables of the described signal model can be
estimated by a properly designed observer which was intro-
duced and analyzed in [4]. This can be seen in Fig. 2. It tries to
reconstruct the y[n] input signal by refining the x̂[n] estimated
state variables based on the ε[n] reconstruction error with the
help of the gk[n] reciprocal basis. The latter is denoted by

g[n] =
(
g0[n] g1[n] · · · gK−1[n]

)T
. (8)

With the notation introduced so far, the timecourse of the esti-
mated state variables can be given by the following equation:

x̂[n+ 1] = x̂[n] + g[n]cT [n](x[n]− x̂[n]). (9)

It was proven in [4] that x̂[n] = x[0] after N time steps
(or less) if g[n] and c[n] form a biorthogonal basis and the
conceptual signal model is the one seen in Fig. 1a.

IV. DERIVATION OF DEAD-BEAT PROPERTY IN CASE OF
NONCOHERENT SIGNALS

A. Preliminaries

The basis can be collected into a matrix as row vectors:

C =
(
c[0] c[1] · · · c[N − 1]

)
. (10)

This gives rise to an alternative notation with the help of the
e[n] standard basis vectors

c[n] = Ce[n]. (11)

This can be applied to the reciprocal basis as well which leads
to a concise representation of the biorthogonality of the bases:

GCT = I. (12)

B. Observability

The previous section reviewed the properties of the observer
and stated that it is able to estimate the state variables without
error. This is possible in the case of the extended conceptual
signal model shown on Fig. 1b by proving that it is completely
observable. Theorem 3 achieves exactly that, to apply it one
needs to determine the canonical form of the model:

x[n+ 1] = Ix[n] + Iu[n], (13)

y[n] = cT [n]x[n]. (14)
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In this case the observability gramian defined in the appendix

O[n0] =




cT [n0]
cT [n0 + 1]

...
cT [n0 +N − 1]


 (15)

is simply a permutation of CT for all n0 due to the periodic
extension of c[n] (3) and because Φ[n] = I . Thus O[n0]
has maximal rank because C (10) is invertible. This satisfies
the premise of the applied theorem, which means that the
extended conceptual signal model is totally observable. The
existence of a suitable observer can be asserted from this,
but the task of finding it remains. In general, the problem of
finding a linear time variant observer is solved, but observers
of this kind are using the inputs of the signal model. There are
ways to allow unobservable inputs [5] but the design process
is rather complex, not to mention the loss of advantageous
numerical properties. Thus the remainder of the article will
investigate the observer illustrated on Fig. 2.

C. Impulse response

The goal of this section is to show that the observer not only
has an impulse response despite it’s time variant nature but it
is δ[n−N ]. This statement can be formulated equivalently as
if y[n] = δ[n], then ŷ[n] = δ[n − N ]. To show this the first
step is to reorganize the state equation (9) of the observer:

x̂[n+ 1] = x̂[n] + g[n](y[n]− ŷ[n]) =

= (I− g[n]c[n]
T
)x̂[n] + g[n]y[n] =

= (I−Ge[n]eT [n]G−1)x̂[n] + g[n]y[n], (16)

where the last equation uses the definition of c[n], g[n] (11)
and their biorthogonality (12). It is clear that ∀n ≤ 0 x̂[n] = 0
and by induction for all 1 ≤ n ≤ N x̂[n] = g[0]. If n = 1

x̂[1] = (I− g[0]c[0]
T
)0+ g[0]1 = g[0]. (17)

Assuming the induction hypothesis for 1 ≤ n < N

x̂[n+ 1] = (I−Ge[n]eT [n]G−1)g[0] + g[n]0 =

= g[0]−Ge[n]eT [n]G−1Ge[0] = g[0]. (18)

The first equation uses the hypothesis, the definition of the
state equation (9) and y[n] while the second equation uses the
definition of g[n] (11). The final equation uses the fact that in
this case eT [n]e[0] = 0 always holds due to the choice of n.

And finally when n = N + 1

x̂[N + 1] = g[0]−Ge[N ]eT [N ]G−1Ge[0] = 0 (19)

which is true because the signals were extended periodically,
thus e[N ] = e[0]. This means that ∀n > N x̂[n] = 0.

Until this point we have proven that when the input is δ[n]
then the state variables of the observer are constant with value
g[0] for N timesteps. Consequently the estimated output for
n ≤ 0 and n > N is ŷ[n] = 0, and for 0 < n < N is

ŷ[n] = cT [n]x̂[n] = eT [n]G−1Ge[0] = 0 (20)

but for n = N

ŷ[N ] = cT [N ]x̂[N ] = eT [N ]G−1Ge[0] = 1 (21)

We have proven that ŷ[n] = δ[n − N ], if y[n] = δ[n]. But
it is necessary to show the time invariance of this response
so in the case when y[n] = δ[n − k] for some k ∈ Z. The
previous reasoning remains valid, the only difference is that the
value of x̂ is g[mod (k,N)] instead of g[0]. As an important
consequence it must be noted that the observer is capable of
the error free reconstruction of arbitrary well behaved signals.

D. Expression of state estimation error
The task that remains is to investigate the value of the

estimated state variables compared to the ones in the con-
ceptual signal model. Based on the observability of the latter
it is expected that reconstruction is possible in the sense of
Definition 2.

Unfortunately this is not the case and the intuitive reason
lies in the way the estimation is carried out. It is important to
note that the observer does not incorporate the inputs of the
signal model into the estimation. For example when the state
variables are perturbed then the ε[n] reconstruction error on
Fig. 2 is nonzero which clearly indicates that the estimation
is not exact. But without this error it would be impossible to
tune the estimated variables.

The reconstruction error can be expressed in a closed form
with the repeated application of the state equation (9):

x̂[n] =

(
n−1∏

i=0

Φ[i]

)
x̂[0] +

n−1∑

j=0




n−1∏

i=j+1

Φ[i]


g[j]y[j], (22)

where Φ[n] = I − g[n]cT [n]. In the corner cases when the
initial value of a sum (product) counter is larger than it’s final
value, then the value of the sum (product) is 0 (1) and it is
important to point out that the periodic extension of the signals
is frequently used. It was proven in [4] that

N−1∏

i=0

Φ[i] =
N−1∏

i=0

(I− g[i]cT [i]) = 0 (23)

and if i ̸= j then due to the biorthogonality of the bases

g[i]cT [i]g[j]cT [j] = 0. (24)

As a consequence, this means that for any n ≥ N the
estimation is not dependent on the initial value. Furthermore
it won’t be dependent on y[j] if j < n−N . Considering these
and the fact that y[n] = cT [n]x[n] the equation (22) can be
simplifed when n ≥ N :

x̂[n] =

n−1∑

i=n−N

g[i]cT [i]x[i]. (25)

With this result the reconstruction error can be written as:

ε[n] = cT [n]

(
x[n]−

n−1∑

i=n−N

g[i]cT [i]x[i]

)
. (26)

It is straightforward to show based on (23) that the error is 0
if the state variables are constant for at least N timesteps.
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V. CONCLUSION

The paper reviewed a method to create biorthogonal trans-
forms and an observer which is capable of performing said
transforms. For the construction of the observer a detailed in-
troduction of a conceptual signal model and it’s extension was
necessary. The observability of the extended signal model was
shown and the properties of the observer were investigated.

In particular, as a novelty, the observer’s ability to re-
construct noncoherent signals was proven which to the best
knowledge of the authors has not been done before in this
general setting. The main area of application of the observer
is the recursive implementation of the DFT [6] [7] [8] and
in that special case a modified observer structure can be used
which is time invariant so the analysis is different.

Lastly the expression of the state estimation error was
derived which proved that the extension of the conceptual
signal model is a proper generalization which gives back the
original model as a special case. These results serve as a
theoretical foundation for the research to come.

APPENDIX

A. Results About Signal Reconstructibility
Lemma 1: If e[n] is the nth standard basis vector of CN

then for all n ∈ Z when y[n] ∈ C, there exists x[n] ∈ CN ,
such that

y[n] = eT [n]x[n].

Proof: It suffices to show the existence of x by giving it.
Let’s choose

x[n] = e[n]y[n] (27)

which clearly satisfies the statement of the lemma because

eT [n]x[n] = eT [n]e[n]y[n] = y[n]. (28)

Theorem 2: Given a basis (c[n]) and reciprocal basis (g[n])
of CN , then for all n and y[n] ∈ C, there exists x[n] ∈ CN ,
such that

y[n] = cT [n]x[n].

Proof: Based on it’s definition

c[n] = Ce[n] (29)

Substituting this into the equation results in

y[n] = cT [n]x[n] = eT [n]CTx[n] = eT [n]x̃[n] (30)

where the last equation defines

x̃[n] = CTx[n]. (31)

This makes it clear that Lemma 1 can be applied, so

CTx[n] = x̃[n] = e[n]y[n]. (32)

Multiplying with G from the left gives

x[n] = GCTx[n] = Ge[n]y[n] = g[n]y[n], (33)

where the first equation is true because the basis and reciprocal
basis vectors are biorthogonal (12) and the last is just the
definition of g[n] (11). This proves the existence of x.

B. Linear Time Varying Discrete-Time Systems

The following definitions are the straightforward general-
izations of the time invariant case described in [9, sec. 9.3].

Definition 1: An LTV DT system has the following form:

x[n+ 1] = Φ[n]x[n] + Γ[n]u[n], (34)
y[n] = C[n]x[n], (35)

where x[n] ∈ Cp, y[n] ∈ Cq and u[n] ∈ Cr.
Definition 2: An LTV DT system is completely observable

at time n0 if and only if there is a finite N such that any
x[n0] state can be determined exactly from the knowledge of
the u[n] inputs and y[n] outputs at time instants n0 ≤ n ≤ nN .

Definition 3: An LTV DT system is totally observable if and
only if it is completely observable for every n0 and nN > n0.

Theorem 3: An LTV DT system is completely observable
if

rank(O[n0]) = p,

where

O[n0] =




C[n0]
C[n0 + 1]Φ[n0]

C[n0 + 2]Φ[n0 + 1]Φ[n0]
...

C[n0 +N ]Φ[n0 +N − 1] . . .Φ[n0 + 1]Φ[n0]




.

Proof: An obvious extension of the proof in [9, sec. 9.3].

In order to check the total observability of the system it is
necessary to check the previous theorem for any n0.
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Abstract—Microstate analysis of EEG recordings has long been
an instrumental tool for studying the temporal dynamics of
whole-brain neuronal networks. The characteristics of EEG mi-
crostate sequences have been used mostly for diagnostic purposes,
including the detection of schizophrenia, epilepsy, Alzheimer’s
disease, and early dementia. Aside from diagnostics, the use of
this methodology has been limited. In this study, we examine
the discriminative power of EEG microstates to differentiate
between mental tasks, and we assess the generalizing power of
microstate representations over different subjects and recording
sessions. For this purpose, we inspect both the characteristics
of discrete microstate sequences, as well as various features
generated from the association of detected microstates with
the continuous EEG data. For demonstration purposes, we use
two distinct datasets, which contain recordings from multiple
subjects, while performing different mental tasks.

Index Terms—EEG microstates, electroencephalography,
statistics, machine learning

I. INTRODUCTION

EEG microstate representations provide a tool to analyze
the temporal dynamics of whole-brain neuronal networks.
Microstate analysis has been shown to be capable to diagnose
schizophrenia [1] [2], epilepsy [3], Alzheimer’s disease and
early dementia [4]. However, the study of differences between
the microstate characteristics of thought processes remain
limited. In this paper, we theorize that there is a significant
difference in whole-brain temporal dynamics between different
mental tasks, aside from the obvious differences which are
limited to specific functional areas of the brain. Additionally,
we examine the microstate representation as a dimension-
reduction tool for EEG data classification.

II. DATA USED

For this study, two separate datasets were used: (1) the
InnerSpeech dataset [5], and (2) the SAM40 dataset [6].

The InnerSpeech dataset contains recordings from 10 sub-
jects, with a total of 3 recording sessions per subject. During
a session, the subject was presented with a direction (”up”,
”down”, ”right”, ”left”), and had to perform one of three tasks
according to the current phase within the recording session.
The task was to either say the given direction out loud as
regular speech, ”say” the direction silently as inner speech, or
imagine that the dot on the screen in front of the subject is
moving towards the designated direction (visualized motion).

Every recording session contained 100 direction queues in
total, of which 20 belonged to the ”loud speech”, 40 to the
”inner speech” and 40 to the ”visualized motion” tasks. In
total, the dataset contains 600 ”loud”, 1200 ”inner” and 1200
”visual” queues. The recordings were made using 128 EEG
electrodes arranged in the standard BioSemi128 montage at a
sampling frequency of 256 Hz.

The SAM40 dataset contains 40 subjects in total, with
3 recording sessions for every subject. In every recording
session, the subject performed 3 mental tasks, each for 25
seconds. All of these tasks were simple problems which
required binary decisions, essentially ”yes or no” answers. The
first task in every session was the ”stroop color-word test”, in
which the subject had to decide if the word on the screen
matched the color with which it was written (e.g. if the word
”green” was typed with green letters, or a different color). The
next task was the ”mirror image symmetry test”, in which the
task of the subject was to determine if the two images on the
screen (consisting of large colored tiles) were symmetrical or
not. Lastly, the final task for every session was the ”arithmetic
test”, where a simple equation was presented on the screen,
and the subject had to determine if it was correct or not. Every
one of these tasks were performed multiple times in every
recording session, where upon completion, the subject was
presented with a new task within the same category, during
the time interval (25 seconds) designated for the given task.
In total, the dataset contains 120 ”stroop”, 120 ”symmetry”
and 120 ”arithmetic” recordings, each 25 seconds long. The
recordings were made using 32 EEG electrodes in the standard
1020 montage, at a sampling frequency of 128 Hz.

III. METHODS

To determine the discriminative power of microstates over
the different mental tasks described in section II, several
statistical and machine learning methods were applied, includ-
ing cluster ”goodness of fit” metrics, analysis of statistical
significance, Support Vector Machines (SVM), Markov-chain
classifiers, and Convolutional neural networks. The methods
used for classification were evaluated using both randomized
and subject-wise cross-validation, to assess cross-subject gen-
eralization capabilities. The preprocessing and analysis was
performed using the MNE [7] and Pycrostates [8] libraries.
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A. Preprocessing and data standardization

For both datasets, standard EEG preprocessing techniques
were applied: the powerline noise was removed using a notch-
filter at 50Hz, slow drifts and high-frequency noise were
countered using a band-pass filter between 1 Hz and 40
Hz. Afterwards, automatic artifact removal was performed
for the InnerSpeech dataset using Independent Component
Analysis (ICA) [9], where the correlation with the dedicated
electrooculographic (EOG) electrodes (placed directly above
and below the right eye, as well as on both temples) was
used as an exclusion criteria to identify the components
containing blink and eye movement artifacts. Note that in the
case of the SAM40 dataset, artifact removal was previously
carried out by Gosh et al. [6]. After preprocessing, session-
wise standardization was performed by calculating the Z-score
of the resulting voltage levels over every session, therefore
bringing the expected value and standard deviation of the
sessions into a common domain.

B. Microstate clustering

Microstates are quazi-stable, transient states that can be
observed in an EEG recording [10]. In order to determine the
microstates that will be used for further analysis, the local
maxima of the Global Field Power (GFP) was determined
using a simple peak detection algorithm, which relies on
neighbouring values. As previous research has showed, a
stable microstate usually persists for around 100 ms, except
for GFP fluctuations and changes in polarity [10]. From this,
the minimum peak distance of the peak detection algorithm
was set to 50 ms, therefore drawing roughly between 1 and 3
samples from every persistent microstate. After peak detection,
the identified GFP peaks were sub-sampled so every session
(from every subject) is represented evenly during clustering.

From the evenly sampled set of GFP peaks, the set of
microstates was determined using a Modified K-Means algo-
rithm [11], with 100 independent initializations, where every
initialization was run until convergence. To determine the
optimal number of clusters, the Calinski-Harabasz score [13]
was used. Every possible number of clusters were considered
within an inclusive range from 2 to 8. The inverse of the
Pearson product-moment correlation coefficient was used as a
distance function both for clustering and cluster evaluation.

Finally, the EEG data was segmented into the microstates
thus defined, so as every time-point is categorized into the
microstate that it has the maximum absolute correlation with.
This approach deliberately disregards polarity, since polarity
inversions can occur during the persistence of an otherwise
stable microstate. Additionally, GFP fluctuations are also
disregarded, because a change in GFP should not affect
the relative distances of the different microstates from the
momentary topographical brain state.

C. Microstate characteristics

To obtain overall characteristics from the microstate se-
quences belonging to the epochs (representing different mental
tasks), a set of length-independent metrics were utilized,

A B C D

Fig. 1. Detected microstates of the InnerSpeech dataset, named using the
standard notation.

A B C F

Fig. 2. Detected microstates of the SAM40 dataset, named using the standard
notation.

adapted from diagnostic studies [1] [2]. The following metrics
were computed independently for every microstate:

• Mean Correlation: the mean correlation value with the
given microstate, taken from the timepoints that have
been categorized to this microstate.

• Global Explained Variance (GEV) [12]: the sum of GEV
values of every timepoint that has been categorized to the
given microstate.

• Time Coverage: the ratio of total time covered by the
given microstate.

• Mean Duration: the average time interval (in seconds) for
which the given microstate persists.

• Occurrence: how many times the given microstate occurs
per second (Hz).

The use of such metrics is particularly beneficial for the
SAM40 dataset, where stimuli occur multiple times within the
25 second cue interval with an irregular rate (depending on
how many times a subject can perform the actual task within
the allowed time-frame), therefore rendering the approach of
classic event-related potential (ERP) analysis impractical.

To determine if there is any significant difference in the
calculated microstate characteristics between different mental
tasks, a statistical test was performed. For this, the difference
between the means (expected values) of every metric was
taken for every class (mental task), and then randomized values
were taken by perturbing the class labels and recalculating the
differences between the expected values for the newly assigned
(randomized) classes. In this case, the null-hypothesis assumes
that the difference between the examined classes (regarding the
examined characteristic) was the result of random chance, in-
stead of a real underlying phenomenon. The probability (p) of
the null hypothesis was estimated given the original difference
between the expected values, assuming a normal distribution
over the randomized difference values. The difference was
considered significant, if p < 0.01.
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D. Discriminative power of microstate sequences

To assert the discriminative power of microstate sequences,
multiple approaches were considered.

First, the discriminative power of the microstate characteris-
tics was analyzed, based on the microstate-specific parameters
described in section III-C. For this purpose, Support Vector
Machines (SVM) were utilized, using a Radial Basis Function
(RBF) kernel. Also, the discriminative power of feed-forward
neural networks were investigated over the same characteris-
tics, using a network with 3 hidden layers, having 64, 32 and
16 units respectively, and ReLU as the activation function of
the hidden layers.

Next, the discrete microstate sequences were investigated,
using a Markov-Chain classifier. This classifier fits a Markov-
Chain model to the data from each class, therefore com-
puting the expected state-transition probabilities within the
sequences belonging to the different classes. During inference,
the log-probability of the input sequence is computed from the
Markov-Chain model for every class, and the prediction of the
classifier is the class for which its associated Markov-Chain
model returned the highest log-probability.

Finally, the continuous microstate correlations were consid-
ered as a type of dimension-reduction method for EEG data,
for the purpose of classification. In this case, the correlation
value was computed for every time-point in the EEG (in the
form of the dot-product of the momentary EEG state and the
expected electrode values of the microstate), which resulted
in a unique time-series for every considered microstate. Also,
the Global Field Power was attached to the input as an
additional possible indicator. As a result, the original EEG
data is represented by k + 1 total ”channels”, where k is the
number of considered microstates, and the number of time-
points is unchanged. For the classification for these correlation
sequences, the EEGNet [14] neural network architecture was
utilized, with a temporal kernel size of fs/2 (according to
the recommendation by Lee et. al. [15], where fs is the
sampling frequency of the EEG recording), and spatial dropout
was used. For reference, the classification performance of the
EEGNet architecture was also investigated (using the same
fs/2 temporal kernel length [15]) on the original, standardized
EEG data, using the Z-score standardization, as mentioned in
section III-A.

IV. RESULTS

For both the InnerSpeech and the SAM40 datasets, k = 4
was chosen based on the Calinski-Harabasz score, which
was maximal for the cluster count of four in both datasets.
The resulting microstates for the InnerSpeech dataset can be
seen in figure 1, and for the SAM40 dataset in figure 2.
The microstate labels were determined based on the notation
summarized by Michael et. al. [16]. Although the microstates
were categorized into the closest reference notation, there are
noticable differences between the topographies of the same
microstates from the two datasets. These differences can be
largely attributed to the specific properties of the (relatively
small) patient groups and the measuring equipment.

TABLE I
PROBABILITIES OF THE NULL-HYPOTHESIS FOR THE INNERSPEECH

DATASET

Loud speech
MS GEV Correlation Duration Occurrence Time cov.

A <0.0001 <0.0001 0.2672 0.8832 0.2231
B 0.0042 0.0535 0.7859 0.0464 0.298
C <0.0001 0.3176 <0.0001 <0.0001 <0.0001
D 0.0003 0.0002 0.2063 0.0599 0.0126

Inner speech
MS GEV Correlation Duration Occurrence Time cov.

A 0.0116 0.0049 0.6837 0.3777 0.798
B 0.1184 0.0171 0.6272 0.8764 0.7447
C 0.0037 0.0607 0.0344 0.3245 0.0335
D 0.1301 0.4594 0.8463 0.0447 0.2393

Visualized motion
MS GEV Correlation Duration Occurrence Time cov.

A 0.0856 0.0035 0.5863 0.3308 0.3949
B 0.445 0.7902 0.4191 0.0675 0.5613
C 0.1151 0.6078 0.0001 0.0126 0.0002
D 0.1398 0.0115 0.1292 0.8856 0.3998

TABLE II
PROBABILITIES OF THE NULL-HYPOTHESES FOR THE SAM40 DATASET

Stroop color word task
MS GEV Correlation Duration Occurrence Time cov.

A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
B <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
C <0.0001 0.3057 <0.0001 <0.0001 <0.0001
F 0.5306 0.0134 0.3087 0.806 0.7126

Mirror image task
MS GEV Correlation Duration Occurrence Time cov.

A 0.7686 0.5462 0.6188 0.2551 0.791
B 0.0001 0.0037 0.0764 0.0095 0.0044
C <0.0001 0.5511 <0.0001 0.0079 <0.0001
F 0.1548 0.4334 0.5216 0.0081 0.1636

Arithmetic task
MS GEV Correlation Duration Occurrence Time cov.

A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
B <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
C <0.0001 0.7552 <0.0001 <0.0001 <0.0001
F 0.5972 0.2266 0.7814 0.0257 0.421

A. Statistical significance of characteristic differences

Afterwards, the microstate characteristics were computed
according to section III-C, and the probability (p) for the null
hypothesis was computed for every characteristic and every
mental task, in a one-versus-rest manner. The such-acquired
null-hypothesis probabilities for the InnerSpeech dataset can
be seen in table I, and for the SAM40 dataset in table II. In
both tables, the null-hypothesis probabilities of the character-
istics which satisfied the significance criteria (p < 0.01) are
highlighted. For the InnerSpeech dataset, the characteristics of
the loud speech task showed the most significant difference
from the rest, suggesting that it is the easiest to discrimi-
nate by the examination of whole-brain temporal dynamics.
The other two tasks showed less significant difference with
regards to the examined characteristics, which suggests that
either the semantic difference is small between inner speech
and visualized motion, or it cannot be expressed using the
characteristics of microstate representations. In the case of
the SAM40 dataset, all three mental tasks showed significant
difference with regards to multiple microstates and associated
characteristics, with F being the least indicative microstate.
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TABLE III
CLASSIFICATION ACCURACY OF THE APPLIED METHODS

Data type Characteristics Discrete sequence Correlation EEG data
Model SVM DNN MCC EEGNet EEGNet

Dataset CV-method
random 40%* 40%* 40%* 47% (±1%) 58% (±2%)InnerSpeech subject 40%* 40%* 40%* 46% (±3%) 51% (±4%)
random 53% (±7%) 62% (±8%) 57% (±4%) 63% (±7%) 74% (±8%)SAM40 subject 53% (±7%) 60% (±4%) 54% (±5%) 62% (±9%) 71% (±10%)

*Chance-level predictions

B. Classification based on microstate sequences

To assess the discriminative power of microstates, multi-
ple approaches and representations were examined, as it is
described in section III-D. The objective for both datasets
was to discriminate between the three mental tasks that were
conducted by the subjects during the EEG recording. It is
important to note, that the three classes of the InnerSpeech
dataset are distributed in a 20-40-40 manner (with pronounced
speech being the least-represented class), therefore the chance
level for accuracy regarding that dataset is 40%. In contrast,
the three examined classes in the SAM40 dataset are evenly
distributed, therefore the chance accuracy level for that dataset
is 33.3%. Additionally, for all classification methods, two
different cross-validation methods were applied: (1) random-
ized cross-validation, where all the samples were randomly
assigned to either the training or the test dataset, and (2)
subject-wise cross-validation, where the training and the test
datasets were divided on a subject level.

The classification accuracy of the applied methods over both
datasets and cross-validation techniques is shown in table III.
For the InnerSpeech dataset, the classifications based on the
microstate characteristics and discrete microstate sequences
produced chance-level accuracies, with the only successful
attempts being the classifications based on microstate correla-
tions and the original EEG data (the latter of which is provided
for reference). For the SAM40 dataset, the classification based
on a deep feed-forward neural network produced a similar
level of accuracy as the EEGNet architecture over the mi-
crostate correlation data. However, in the case of both datasets,
the highest level of accuracy was achieved by the EEGNet
architecture applied over the original EEG data, without the
utilization of microstate representations.

V. DISCUSSION

Based on the results of the statistical analysis conducted in
this study, significant differences can be observed in the whole-
brain temporal dynamics while performing different mental
tasks. Also, the two analyzed datasets produced drastically
different results both in terms of classification accuracy (shown
in table III) and statistical difference over the microstate
characteristics (shown in tables I and II). We theorize that
this difference between the datasets can be attributed to the
different nature of the performed tasks. In the SAM40 dataset,
the subjects had to solve actual problems, which required
complex thought processes (producing higher brain activity
in the process), while the InnerSpeech dataset was recorded

on subjects performing less demanding non-interactive tasks.
Finally, the results of the classification attempts suggest that
although the microstate representations produce input data of
significantly lower dimensionality, some of the essential, task-
specific information is lost during conversion. Additionally, the
inter-subject generalization capabilities of microstate represen-
tations are demonstrated by the negligible differences between
the classification accuracies of the randomly cross-validated
and subject-wise cross-validated attempts.
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Abstract—Automatic vertebrae localization and segmentation
in computed tomography (CT) are fundamental for computer-
aided detection (CADe) and computer-aided diagnosis (CADx)
systems. However, they remain challenging due to the high
variation in spinal anatomy among patients. In this paper, we
propose a simple, model-free approach for automatic CT verte-
brae localization and segmentation. The segmentation pipeline
consists of 3 stages. In the first stage the center line of the
spinal cord is estimated using convolution. In the second stage a
baseline segmentation of the spine is created using morphological
reconstruction and other classical image processing algorithms.
Finally, the baseline spine segmentation is refined by limiting its
boundaries using simple heuristics based on expert knowledge.
We evaluated our method on the COVID-19 subdataset of the
CTSpine1K dataset. Our solution achieved a dice coefficient
of 0.8160±0.0432 (mean±std) and an intersection over union of
0.6914±0.0618 for spine segmentation. The experimental results
have demonstrated the feasibility of the proposed method in a
real environment.

Index Terms—spine segmentation, CT, image processing, ex-
pert system

I. INTRODUCTION

The segmentation of the rib cage can be an important
stage in computer-aided detection (CADe) and computer-aided
diagnosis (CADx) systems. In some cases, the spine, as part
of the rib cage, may even need to be segmented separately.
Current solutions for dealing with this task generally use
explicit models of some kind. However, to create sufficiently
robust models, large amounts of well-labelled heterogeneous
data are required. This is not always available. Another draw-
back of these solutions is that they focus on segmenting the
vertebrae individually, thus require a manually defined bound-
ing box, which makes these algorithms only semi-automatic.
Furthermore, the individual labeling is not necessary for all
applications. In this work, we propose a fully-automatic, ex-
plicit model-free algorithm for spine segmentation that utilizes
medical expert knowledge.

II. RELATED WORK

The segmentation of the spine is a currently active area
of research. These solutions usually utilize a model to create
an accurate segmentation. The two main approaches are the
neural network and the statistical model-based solutions. There
are several studies [1]–[4] investigating the use of U-Net [5]

This research was funded by the National Research, Development, and
Innovation Fund of Hungary under Grant TKP2021-EGA-02.

for spine segmentation. Cheng et al. [6] designed a two-
stage Dense-U-Net for automatic CT vertebrae localization and
segmentation. In the first step the centroid of the vertebrae was
localized on the 2D slices using a 2D-Dense-U-Net. Based
on the centroids, a 3D-Dense-U-Net is utilized to segment
the vertebrae within the region-of-interests that are detected
during the first stage. Vania et al. [7] combined a convolutional
neural network (CNN) and a fully convolutional network
(FCN). They also utilize class redundancy to improve the
segmentation results. This means that the area around the spine
is masked with a different value in the training data, forcing
the model to accurately distinguish between the spine and its
surroundings.

To determine a statistical shape model (SSM), Dryden et
al. [8] utilized labeled landmark points of the examined shape
(body). This model is fitted to the detected landmark points
in case of the actual problem by registration. Benameur et
al. [9] use a 2.5D statistical registration model from biplanar
radiographic images for the 3D reconstruction of the vertebrae
of a scoliotic spine.

Khandelwal et al. [10] designed a two-step pipeline for
vertebrae segmentation utilizing the active shape model algo-
rithm [11], which is a type of statistical shape analysis. In the
first step of their pipeline the entire spine is segmented as a
single surface object using region-based geometric flows. This
step requires a seed point identified by the user. In the second
step, the geometry of the vertebrae is taken into account during
the segmentation of the individual vertebrae. They utilize a
shape prior that is fitted based on the density values of the
surrounding area of the spine.

III. METHOD

The segmentation consists of 3 main steps. First, the center
of the spinal cord is estimated on each axial slice. Then,
morphological reconstruction is applied to create a baseline
segmentation of the spine. Finally, this segmentation is refined
to obtain the final segmentation.

A. Spinal cord center estimation

To estimate the center of the spinal cord in the axial slices,
first, the Hounsfield unit (HU) values (see Figure 1a) are
thresholded to highlight the values above bone density. We set
this threshold to 150 HU to ensure that the bone values are
included in the segmentation even in the presence of noise.
You can see the resulting segmentation mask in Figure 1b.
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Although with this solution, the thresholding is robust, if
contrast material is present, the heart and other blood vessels
are also highlighted. To address this issue, only the posterior
half of the body is taken into account on the axial slices.
Another problem caused by the presence of the contrast agent
concerns the descending aorta. The descending aorta runs
close to the spine thus its segmentation might merge with the
segmentation of the spine. This problem is solved by removing
the segmentation of the descending aorta from the resulting
mask. To create the segmentation of the descending aorta a
Hough transform-based method [12] is utilized.

The center of the spinal cord is localized using convolution.
The mask created by thresholding is convolved with a disk
kernel on each axial slice. The diameter of the kernel is set
to match the size of an average vertebra. The result of the
convolution step is shown in Figure 1d.

(a) Input CT slice (b) Bone mask created by thresh-
olding the input CT

(c) The spine localization map
with overlay

(d) The result of the convolution
on which the center of the spine
is localized

Fig. 1: The steps of estimating the center of the spinal cord.
LIDC 0018 [13]

To make the localization more robust the sagittal slice
that contains the largest segmented area is selected. This is
expected to select the sagittal slice at the center of the spine.
This sagittal slice defines a column in the axial slices, with a
band around it in which we look for the center. In this band,
on each slice, the point with the largest value obtained from
the convolution is selected. The resulting points are smoothed
by polynomial fitting using the RANSAC [14] method with
L1 norm fidelity term, which makes it robust to outliers. The
resulting cord center is shown in Figure 2.

B. Baseline spine segmentation

The segmentation created by thresholding the density values
and the resulting estimated spinal cord center points are
utilized to create a baseline spine segmentation. First, rays

Fig. 2: The estimated spinal cord center points (yellow) and
the fitted polynomial (green) projected onto the center sagittal
slice determined by the algorithm. LIDC 0018 [13]

are cast from the center points to the anterior and posterior
directions. The points are recorded where the rays intersect
the segmentation. Points far from the center are discarded.
The remaining points serve as seed points for morpholog-
ical reconstruction [15], which is also based on the mask
produced by thresholding (bone mask). The morphological
reconstruction is performed on each slice separately. At this
point, the voxels belonging to the spinous process might not be
included in the reconstructed mask, since they might belong to
a component other than the seed points of the reconstruction on
the bone mask. This can be solved by dilating the reconstructed
mask across the slices, masking it with the bone mask (using
binary AND operation) and applying another morphological
reconstruction. This solution had two drawbacks. The first
problem is that the segmentation of the descending aorta is
not perfect and the edge of the descending aorta might be
included in the bone mask. Therefore, the dilation across the
slices combined with the second reconstruction may result in
a segmentation that flows into the unsegmented part of the
descending aorta and into the posterior part of the heart. This
is solved by applying the dilation across the slices only in the
inferior direction (i.e. away from the head). This means that
the segmentation of a slice is affected only by the segmentation
of the slices in superior direction (i.e. towards the head). This
way the imprecise segmentation of the descending aorta cannot
flow into the superior slices. The other problem is similar:
part of the descending aorta and other small vessels next
to the vertebral body may be included in the bone mask.
This can lead to the inclusion of unnecessary objects in the
segmentation after the second morphological reconstruction is
applied. To overcome this phenomenon the iteration number
of the morphological reconstruction is limited in the anterior
direction from the center point. An example of the resulting
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Fig. 3: The resulting baseline spine segmentation. This seg-
mentation is refined by subsequent steps to reduce the seg-
mentation of the ribs. LIDC 0018 [13]

segmentation can be seen in Figure 3.

C. Limiting the boundaries of the segmentation

As it can be seen in Figure 3, the segmentation resulting
in the previous step includes unnecessary parts: typically the
ribs are included in the segmentation. The performed steps
described in this section aim to reduce this type of error. These
algorithms utilize expert medical knowledge to determine
bounding lines for the segmentation mask on the axial slices.

We start with the reconstructed mask and the spinal cord
center from the previous step to create these lines. In the axial
slices, this reconstructed mask is used to determine the top of
the vertebral body. Several columns of this mask are selected
in a band around the estimated center of the spinal cord. The
upper part of the segmentation in this band is considered the
most anterior part of the vertebral body.

Maximum intensity projection is performed perpendicular
to the sagittal slices, followed by thresholding to determine
the end of the spinous process. This can be obtained from
the segmentation mask directly. Since the end of the spinous
process can be found further back than the ribs, the most
posterior point of the resulting segmentation is considered to
be the end of the spinous process.

In the next step, the cumulative sum of the number of
segmentation pixels across the columns in each axial slice is
first calculated, then the median of the cumulative sum is used
to calculate a more accurate center column of the vertebral
body.

The upper third of the vertebral body is used to measure
the width of the vertebral body in each slice, which can be
derived from the top of the vertebral body and the end of the
spinous process. The calculated width of the vertebral body
allows us to estimate the maximal width of the whole vertebra.
To precisely separate the ribs from the vertebrae a model
would be required. Here, we utilize a simple heuristics that
ensures that the segmentation includes the transversal process
and cuts off a significant part of the segmentation of the ribs.
The edges of the vertebral body are moved by its width in
both directions. This way two lines are defined from which

Fig. 4: Example for a resulting spine segmentation.
LIDC 0018 [13]

the segmentation is discarded outwards. Figure 4 shows an
example of the resulting segmentation.

D. Evaluation

To evaluate the performance of the proposed segmenta-
tion algorithm the COVID-19 [16], [17] subdataset of the
CTSpine1K [18] dataset was used. The CT scans can be
retrieved from TCIA [19]. The COVID-19 dataset consists
of chest CT scans of full thoracic view from 632 patients
with COVID-19 infections. 20 of these were selected and
annotated in the CTSpine1K dataset. To select CT scans
with full thoracic view for evaluation was crucial, since the
segmentation pipeline relies on certain anatomical features.
Furthermore, the CT scans with reduced field of view are
usually obtained to segment the vertebrae individually and in
such cases the localisation of the spine is not required.

Two metrics were used to indicate the performance of the
algorithm:

• Intersection over union (IoU) is the ratio of the intersec-
tion and union of the segmentation mask defined by the
algorithm (A) and the manual labeling (B):

IoU(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B|

• The Dice similarity coefficient (DSC) equals twice the
intersection of the segmentation mask volumes divided
by the sum of the volumes:

DSC(A,B) =
2|A ∩B|
|A|+ |B| =

2|A ∩B|
|A ∪B|+ |A ∩B|

Table I shows the results of the evaluation.

IoU DSC
avg 0.6914 0.8160
std 0.0618 0.0432
min 0.5654 0.7223

TABLE I: Evaluation results of the proposed segmentation
algorithm.

Table II shows the evaluation results compared to methods
introduced in the related work section. The comparison shows
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that the accuracy of the presented method is at the bottom
of the range. However, it is worth noting, that [3] used only
9 scans for training and 1 scan for evaluating their neural
network. Furthermore, [1] and [2] evaluated their model on the
training dataset. In summary, most of these models achieve a
high accuracy based on a relatively small dataset of samples
with similar characteristics. However, their application to
datasets with different properties may require additional steps,
such as the retraining and fine-tuning of models. In contrast,
our method is more robust, it does not require a labeled
training dataset, and thus no retraining step is needed.

paper IoU DSC method
[1] 0.7228 0.8477 U-Net + ASPP
[2] 0.9433 0.9708 3D Dense-U-Net Network
[3] 0.9193 0.9580 RAR-U-Net
[6] 0.911 0.953±0.014 two-stage Dense-U-Net
[7] 0.9336 0.9428 CNN
[10] - 0.9236 Geometric Flows + Shape Priors
ours 0.6914 0.8160±0.0432 classical image processing

TABLE II: Comparison of results with related algorithms.

IV. CONCLUSION

In this paper, we have proposed an explicit model-free
segmentation technique for spinal segmentation. The seg-
mentation system uses a CT scan of full thoracic field of
view as its input. Classical image processing algorithms that
exploit medical expertise were utilized. Our approach has the
advantage of not requiring an explicit model and it is fully
automatic. This method can be applied when a fast and simple
segmentation is preferred and it is not critical that the ribs do
not completely separate from the spine on the segmentation. In
such cases, however, when individual vertebral segmentation
is required, a model-based approach is necessary.
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Abstract—Error propagation analysis (EPA) is a systematic
model-based approach to assess the impact of incidental or
malicious faults in the dependability and security analysis of
complex systems.

Its main purpose is to estimate the most severe failures in
the system under evaluation. It can be extended to evaluate the
efficiency of built-in error protection and mitigation mechanisms.

However, during the EPA, uncertainties may arise, which may
affect the outcome - this way, the validity of the analysis - and lead
to escaping faults. Uncertainties can originate from two primary
sources. Firstly, epistemic-type uncertainties express that there
may be parts of the analyzed system that are unknown to the
domain expert. Secondly, aleatory uncertainties may arise from
incorrect or incomplete modeling of the system or even from the
non-deterministic operation (physical processes). Our approach
extends the known EPA models by handling the uncertainties
via rough set theory, an advanced mathematical paradigm to
generate approximate descriptions of the system behavior.

Index Terms—error propagation analysis, rough set theory,
uncertainty

I. INTRODUCTION

Compliance with data security and dependability require-
ments is essential for the design and operation of critical
systems. The purpose of such evaluations is a systematic
assessment of whether the propagation of hypothetical failures
does not cause critical failures in the services delivered by the
target system.

The most thoroughgoing impact analysis method is Error
Propagation Analysis (EPA) [1], [2], which takes a model of
the error-free system, generates a set of mutations from the
anticipated fault set, and evaluates these combinations over the
hypothetical input sequences. In this way, the EPA analyzes the
impact of the expected faults on the services provided by the
system. The final result of the impact analysis is used as input
for traditional evaluation methods such as FMEA (Failure,
Modes, and Effects Analysis) or FTA (Fault Tree Analysis).
One of the main advantages of the EPA is its ability to evaluate
composite models exhaustively, i.e., to prove the correctness of
the design within the validity limits of the model. However,
as with all such methods, the uncertainty surrounding some
elements of the methodology is a crucial problem.

There are several reasons for this kind of uncertainty [3]
originating in the insufficiency of the information incorporated
into the composite model:

• The phenomenon of error propagation itself may be non-
deterministic; for instance, if the propagation of data
errors is influenced by intermediate data operations and
faithful modeling of these is impossible at the given level
of abstraction or would require an overly detailed model.

• Occasionally, especially in security analysis, faults and
attacks can change the system’s structure in unforeseen
ways. Typical examples include parasitic couplings be-
tween functionally independent elements in the system
or side-channel attacks.

• A similar problem is an impact assessment of emerging
and future security attacks, which are unknown at the
time of analysis.

• Finally, a significant source of uncertainty is the environ-
ment, as it is out of the system’s control.

As the examples above show, the fundamental contradiction
of impact analysis is that a precise and exhaustive method
running over uncertain models can no longer guarantee a clear
proof of correctness unless there is a proper solution to handle
the uncertainty.

There are numerous solutions for dealing with uncertainty,
such as probabilistic, fuzzy, and Bayesian network-based ap-
proaches quantifying the uncertainty and the final analysis
results.

This paper presents a rough set theory-based (RST) un-
certainty handling approach that delivers a pure qualitative
view and avoids hard-to-estimate quantification. Our approach
supports uncertainty handling in a qualitative, symbolic way,
which allows the integration of the approach with existing dis-
crete validation and verification (V&V) methods. Furthermore,
using a qualitative approach, logic inference can be used to
evaluate the system in an iterative way to reduce uncertainty
gradually.

The RST-based error propagation analysis approach can
be used to deal with both epistemic (knowledge-related) and
aleatory-type (dependence on a random event) uncertainties.
It can identify the critical points in the system whose fault can
lead to a subsequent critical failure.

The paper first introduces RST (Sec. II) and EPA (Sec. III)
as the basis of the uncertainty-aware EPA approach (Sec. IV).
The paper continues with a use cases section (Sec. V) that
explores the handling of both epistemic and aleatory uncertain-
ties and concludes with a summary and future work description
(Sec. VI).
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II. ROUGH SET THEORY

Pawlak [4] proposed RST, a mathematical paradigm to deal
with imprecise, inconsistent, incomplete, uncertain informa-
tion and knowledge. This section presents the basic concepts
[5], [6] of RST.

An information system is a pair IS = (U,A), where U is
a non-empty finite set of objects called the universe and A is
a non-empty finite set of attributes such that: a : U → Va for
every a ∈ A The set Va is called value set of a.

Decision systems are particular information systems with
a distinguished attribute called the decision attribute. The
decision attribute expresses a previously known decision (clas-
sification) based on the attributes. Formally, DS = (U,A∪d),
where d /∈ A is the decision attribute.

Indiscernibility: Given a subset of the attribute set B ⊆ A
an indiscernible relation IND(B) on the universe U can be
defined as the element pairs which provide identical values for
the potentially restricted set of attributes:

IND(B) = {(x, y)|(x, y) ∈ U2,∀b∈B(b(x) = b(y))} (1)

The equivalence class of an object x ∈ U contains all
the objects from them x is indiscernible. It is denoted by
[x]IND(B) or shortly [x]B .

Approximation sets: Given an information system IS =
(U,A), for a subset X ⊆ U and B ⊆ A, two approximation
sets are defined in the following way: Upper (or brave)
approximation covers all the potential members of the set:

B(X) = {x ∈ U |[x]B ∩X ̸= ∅} (2)

meaning that [x]B has members in X .
Lower (or cautious) approximation covers all certain mem-

bers of the set:

B(X) = {x ∈ U |[x]B ⊆ X} (3)

meaning that all of [x]B members are in X .
This way, B(X) ⊆ X ⊆ B(X).
The approximations partition the universe of the objects

into three disjoint regions according to the decidability of
containment in X:

POS(X) = B(X), the positive region (4)

BND(X) = B(X)−B(X), the boundary region (5)

NEG(X) = U −B(X), the negative region (6)

• If an object x ∈ POS(X), then it certainly belongs to
target set X

• If an object x ∈ BND(X), then it is undecidable whether
the object x belongs to target set X or not.

• If an object x ∈ NEG(X), then it certainly doesn’t
belong to target set X .

One main advantage of RST is the support of symbolic
computations if the different approximations are defined by
their respective membership functions. There are several rules
supporting logic reasoning on rough sets [5], such as union,
intersection, difference, and complementary with the usual
manipulation of the respective membership functions.

Union:
B(X ∪ Y ) = B(X) ∪B(Y ) (7)

B(X ∪ Y ) ⊇ B(X) ∪B(Y ) (8)

Intersection:

B(X ∩ Y ) = B(X) ∩B(Y ) (9)

B(X ∩ Y ) ⊆ B(X) ∩B(Y ) (10)

Implication:

X ⊆ Y =⇒ B(X) ⊆ B(Y ) and B(X) ⊆ B(Y ) (11)

III. ERROR PROPAGATION ANALYSIS

The core idea of EPA is the simultaneous tracing of the
value propagation of the same input over a fault-free system
model and several faulty mutations according to the anticipated
fault set. The diagnostic model for the EPA is shown in Fig.1.

• The reference (fault-free) component describes the in-
tended behavior of the component. It takes the reference
input and processes it according to the normal operational
mode.

• The mutated component is based on mutation generation
that happens by selecting the particular fault mode of a
component in a generalized mutation metamodel.

Fig. 1: Diagnostic model

The calculation of the actual output consists of two steps.
1) First, it depends on the actual input of the component,

which can be either a previously processed value from
a preceding component or an injected value (fault injec-
tion).

2) Second, the component processes the actual input regard-
ing the selected fault mode. A fault selector selects the
component’s fault mode. In the case of the ”No internal
fault” assumption, the component processes the input as
it internally works as intended. If an internal fault is
selected, component mutations describe faulty operational
modes.

Finally, failures can be estimated by comparing the refer-
ence output of the fault-free model with the particular outputs
of the mutations. The failure classifier component determines
the fault mode by comparing the reference and the actual
output of a component. The failure classifier uses the semantics
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of the faults as predefined rules to determine the failure mode.
For example, if the input and output have different values, it
is a value difference data error. Naturally, the functionality of
the failure classifier can be extended in a problem-dependent
way. For instance, to estimate the severity of the failure.

The output of EPA is a table (e.g., Tab. I) containing
scenarios in the rows. A scenario can be described by the
active fault modes (fault activation) of the components and
the violated requirements.

IV. UNCERTAINTY-AWARE EPA

The result of the EPA is not always consistent and certainly
complete due to the uncertainties mentioned in Sec. I. The
resulting evaluation table can be interpreted as a decision
system DS = (S, FM ∪ R), where S is a non-empty finite
set of scenarios (as objects), FM is a non-empty finite set
of possible component fault modes (as attributes), and R is a
non-empty finite set of requirements (as decision variables).
Table I is a decision system that contains 8 objects (S1-S8)
with 2 attributes (FM1, FM3) and two decision attributes (R1,
R2). Requirements can be formed based on the system’s safety,
security, or functional requirements.

For violated requirements (dangerous case), the correspond-
ing objects (scenarios) can be selected X = {r|Ri(r) =
V iolated}. The RST approximation of the selected scenarios
has the following interpretations:

• The upper approximation (FM(X)) contains the scenar-
ios with the fault activations which may lead to a violation
(set).

• The lower approximation (FM(X)) contains the scenar-
ios with the fault activations, which certainly lead to a
violation (set).

• FM(X) = ∅. No requirement violation exists (if all
the scenarios are sound and complete, it can be stated
that the evaluated requirements cannot be violated in
the original system). This proves the fulfillment of all
evaluated requirements by the system.

• FM(X) ̸= ∅ → ∃solution, the existing solution will
provide an example fault mode set and behavioral trace
that leads to the requirement violation proving the insuf-
ficiency of the technical system.

• BND(X), fault mode combinations in the boundary
region are necessary but not sufficient conditions for
the violation of the evaluated requirement, indicating
suspicious systems suspected for further evaluation.

Rules interpreted on RST approximations (Rule 7-11) fa-
cilitate the fusion and joint investigation of information from
different sources. For instance, if we have two independent
requirements in the EPA, one is described by a technical sheet
of a hardware component, and the other is a software-related
requirement. We want to determine for which active (compo-
nent) fault modes the occurrence of simultaneous violations
of both requirements are either certain (lower approximation)
or possible (upper approximation). The RST rule 9 obtains
the joint lower approximation solution as B(X ∩ Y ) =

B(X)∩B(Y ). Rule 10 obtains the estimate of the joint upper
approximation: B(X ∩ Y ) ⊇ B(X) ∩B(Y ).

Fig. 2: Water tank architecture

When two system requirements are not mutually indepen-
dent (RX ⊆ RY , where RX is a more specific require-
ment), then RST Rule 11 derives a containment relation for
their respective lower and upper approximations (B(RX) ⊆
B(RY ) and B(RX) ⊆ B(RY )).

V. USE CASES

The paper presents the use cases on a pilot study from [7].
The water tank system (Fig. 2) consists of a main water tank
component with input and output valve actuators and their
respective controllers. The water tank includes a water level
sensor that measures the water level in the tank. The water
tank controller sends control messages to the valve controllers
based on the measure of the water level sensor. The system
also contains a Human-Machine Interface (HMI) where the
operator can see the status of the system and can react to
dangerous events.

The safety requirements for the system are 1) R1: the water
tank should not be overflow; 2) R2: alert should be sent to
the operator in case of water tank overflow. The subsequent
examples consider the following possible fault modes of the
components: 1) FM1: Input Valve Stuck-at-Open 2) FM2:
Output Valve Stuck-at-Open 3) FM3: HMI No signal

A. Epistemic uncertainty

The first example illustrates the handling of epistemic un-
certainty. In Table I, there are many contradictions between the
scenarios when examining the Requirement R1. Contradiction
means here that for a given fault mode combination, the
violation of the requirements is not unequivocal (e.g., for S4
and S5).

The first requirement is violated in Scenario S2, although
none of the failure modes is active. The modeling incomplete-
ness probably originates from some hidden, unknown state
variable influencing R1.

Fig. 3 shows the negative region (NEG) in red, boundary
region (BND) in blue, and positive (POS) region in green.
The lower approximation for Requirements R1 and R2 are
FM(R1) = {S2} and FM(R2) = {S6, S8}. Their joint
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Fig. 3: Approximation sets for Table I

TABLE I: EPA evaluation table

Scenario Fault modes Requirements
FM1 FM3 R1 R2

S1 Active - -
S2 Violated -
S3 Active - -
S4 Active Violated -
S5 Active - -
S6 Active Violated Violated
S7 Active Active - -
S8 Active Active Violated Violated

lower approximation yields an empty set (FM(R1∩R2) = ∅).
The joint upper approximation is FM(R1∩R2) = {S6, S8}.
As the lower approximation is empty, the boundary region
equals the upper approximation, and no certain diagnostic
conclusions can be drawn.

The purely uncertain result may originate from insufficient
knowledge of diagnostics. The analyst can adaptively comple-
ment the analysis with sequential diagnostics by adding new
observations to reduce epistemic uncertainty.

Adding a new observed attribute (fault mode) FM2 to the
model (Tab. II) reduces but does not eliminate the uncertainty,
as the boundary region is still non-empty. The next subsection
further examines the remaining uncertainty in the analysis.

B. Aleatory uncertainty

Aleatory uncertainties can arise from model imperfections
and non-deterministic behavior. This type of uncertainty is typ-
ical when a system contains third-party black-box components,
has unknown parameterization (e.g., shared cloud system),
or is a multiprocessor system. Investigating Requirement R1
(Table II) indicates a contradiction for the same anticipated
fault set (stuck-open input and output valves (FM1, FM2) )
between scenarios S4 and S5. Scenario S4 leads to a violation
of Requirement R1, while Scenario S5 does not.

TABLE II: Extended evaluation table

Scenario Fault modes Requirements
FM1 FM2 FM3 R1 R2

S1 Active - -
S2 Active Violated -
S3 Active - -
S4 Active Active Violated -
S5 Active Active - -
S6 Active Active Violated Violated
S7 Active Active - -
S8 Active Active Active Violated Violated

This may be because the system model is built from a
general component catalog, not binding by default all param-
eters of the elements. Thus, EPA checks all the individually
existing but mutually exclusive combinations as if they were
simultaneously present. In this specific case, the source of the
contradiction could be the undefined relationship between the
throughputs of the output valves:

• An output valve smaller than the input one may cause an
overflow if both valves are stuck open (Scenario S4).

• If the relationship is opposite, the in-flowing water easily
flows out of the tank through the larger output valve, and
the requirement is not violated (in Scenario S5).

The joint lower bound for the simultaneous violation of Re-
quirements R1, and R2 is: (FM(R1∩R2) = {S2, S6, S8} ∩
{S6, S8} = {S6, S8}). The lower bound can be transformed
to a symbolic rule (FM2(Active)&FM3(Active) =⇒
V iolation(R1, R2)) describing the sufficient conditions of the
evaluated requirement violations. This inductive reasoning-
styled symbolic representation of sufficient (and necessary)
conditions facilitates the explainable interpretation of the re-
sults for further validation of the system.

VI. SUMMARY AND FUTURE WORK

Rough Set Theory provides a powerful paradigm to assess
and manage the effects of uncertainty at a global level.
In many cases, however, the starting point for uncertainty
is some local effect or lack of knowledge. In such cases,
sensitivity analysis allows refinement of the model that results
in global uncertainty by applying requirements limiting local
uncertainty.

It should be emphasized that the primary mechanism of
sensitivity analysis is essentially the same as that of EPA. It
can be mapped into local information or system model faults
and assessed their impacts.
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Abstract—In this paper, we propose the application of a well-
known runtime fault-tolerance technique, N-Version Program-
ming (NVP), as a new tool of smart contract software fault mit-
igation, especially for execute-order-validate blockchain systems,
such as Hyperledger Fabric (HLF). Two patterns for aligning the
NVP concept with the HLF architecture are proposed. A fully
transparent solution where all peers have the same N versions
installed and one we termed ‘O-Version Programming’ (where
‘O’ stands for ‘Organization’), which relies on the majority voting
aspects of execute-order-validate consensus mechanisms.

Index Terms—blockchain, distributed ledger technology, n-
version programming, runtime fault-tolerance, smart contracts

I. INTRODUCTION

The software faults of smart contracts installed on
blockchain systems may have devastating consequences. This
has been made clear by unfortunate events such as the infa-
mous Decentralized Autonomous Organization (DAO) hack
in 2016 when 60 million US dollars worth of Ether was
stolen [1]. In cryptocurrency contexts, faults result in potential
financial loss. In consortial networks, however, the stakes may
be much higher. For example, in a critical system application,
smart contract faults might result in an accident or threat to
human life.

Much research has been done to combat this problem, but it
mainly focused on development-time fault-removal techniques,
such as mutation testing [2], static analysis [3], and vulnerabil-
ity detection via Machine Learning (ML) [4], to name a few.
However, fault-tolerant computing also traditionally knows
and employs a set of runtime patterns. These are problematic
to apply to public blockchains such as Ethereum because
the increased smart contract time and space complexity incur
additional, significant costs1. There is no such problem with
private, consortial blockchain platforms, where it may be
reasonable to implement runtime fault-tolerance methods, even
at the cost of higher complexity.

This paper concentrates on a single runtime pattern: N-
Version Programming (NVP) [5]. NVP calls for the indepen-

1Smart contract deployment costs depend on the size of the contract. Then,
each execution costs the calling party gas, which depends on the transaction
complexity.

dent development of n ≥ 2 functionally equivalent imple-
mentations of the same software specification. It is crucial
that these implementations be as diverse as possible. To this
end, they are often developed by different teams in different
programming languages and using different algorithms and
design patterns. The premise is that these different versions
will likely not contain the same potential faults [6]. In the
most elementary setup, the versions are executed in paral-
lel, and their results are compared by a voter component
which performs, for example, majority voting on them. In
more complex applications, there may be an entire N-Version
Execution Environment that manages the versions and their
execution. NVP’s popularity has somewhat dropped in recent
years because some research suggests that the assumption of
fault independence among the versions may be misguided
or at least that care must be taken to consider dependent
faults [7]. On the other hand, it seems that NVP might have
a renaissance in the world of Artificial Intelligence (AI), as
new publications suggest using it to improve reliability and
resilience in ML models. The idea is to overcome the difficulty
of reliable ML models by generating n versions of an ML
component and then executing these diverse replicas, which
costs more computations, but optimally results in significantly
higher reliability [8], [9], [10], [11].

We identify two potential ways of applying NVP to smart
contracts, especially in Hyperledger Fabric (HLF) (version
2.4). The first one is transparent from the platform’s perspec-
tive and involves installing n versions of the same chaincode
(or, more generically, smart contract) on every affected peer.
The second approach takes advantage of the voting-like char-
acteristics of HLF’s consensus protocols. In the latter case, we
propose that each organization have its own version installed
on its peers, hence the coined name ‘O-Version Programming
(OVP)’ (‘O’, as in ‘Organization’).

The rest of this paper is organized as follows: the next
section compares our work with state-of-the-art fault-tolerance
techniques for smart contracts. Then, section III and section IV
introduce our classic, transparent approach and ‘O-Version
Programming’, respectively. Finally, we summarize our work
and describe its planned future advancements in section V.
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II. RELATED WORK

To the best of our knowledge, there is currently only one ap-
plication proposal of NVP in the context of Distributed Ledger
Technology (DLT) and blockchain systems: Hydra [12], which
uses a variant of NVP called N-of-N-Version Programming
(NNVP) and focuses on error detection and safe termination
rather than fault tolerance (the goal of classic NVP) featuring
a bounty system rewarding finders of critical software faults.
Technically, Hydra is designed for Ethereum. In contrast, our
proposals do target the classic NVP objective of fault tolerance
and focus on consortial DLT platforms, such as HLF.

III. CLASSIC APPROACH

The most straightforward method to adopt NVP for Fabric
chaincode (on first sight) is to simply install not one, but n im-
plementations of the same chaincode specification everywhere
(i.e. on every peer where the single chaincode would normally
be installed) and then ensure that each version is executed, the
results are compared, and some business logic decides the end
result. This is the bare minimum, but more valuable features
can be added, such as an additional layer of input and output
validation before and after the versions are executed.

An arguably more elegant and viable alteration of this
method is to package the entire NVP architecture into a single
chaincode container, so in the perspective of Fabric, only a
single chaincode is installed, and it can be invoked as usual.
Behind the scenes, this chaincode is a facade hiding several
chaincode versions and the validation and voting logic.

It is worth mentioning that Fabric also offers the capability
to run chaincode as an external service rather than on the
peers directly, opening up new possibilities for multi-version
chaincodes. While external chaincode is not in the scope of
this paper, it is a subject of future research regarding the topic.

A. Master Chaincode as Controller

If one wishes to follow the first elementary solution, the
following steps must be taken:

1) Create a master chaincode as an entry point: it may
perform input parameter checking, then invoke all n
versions (passing on the input parameters), collect the
returned values, compare them, and decide which (if
any) result should be considered correct, and finally
return that to the peer. This chaincode must also provide
an Application Programming Interface (API) for reading
and writing any data the chaincode needs, which the n
versions will use.

2) Create n independent, diverse implementations of the
chaincode specification. They may read and write the
ledger via the master chaincode only.

3) Install all n versions as well as the master chaincode on
all peers desired to be able to execute the chaincode.

4) Ensure clients are not allowed to interact with the n ver-
sions directly but only the master controller chaincode.

Figure 1 offers an architectural overview of this approach.
The correct implementation of the master chaincode is essen-
tial, as it is a Single Point of Failure (SPOF) in the system.

Fortunately, input/output validation and voting logic are not
expected to be overly complex. Fabric’s permissioning system
can control who may invoke what chaincode, so it is possible
to forbid the invocation of the individual versions by any
client.

One downside to this method is that n+1 chaincode versions
must be installed and maintained separately, and Fabric has
no way of knowing they are related. Furthermore, since every
chaincode essentially has its own namespace, the chaincode
variants are to perform read/write operations via the master
chaincode to be able to access the same data. This complicates
matters to an extent that makes the containerized approach
outlined in the next subsection superior in almost every
aspect. The benefit is that this kind of complete separation
of the implementations makes it possible to mix program-
ming languages easily, further increasing software diversity
– something which is more complicated in the containerized
architecture.

Client Peer

Master Chaincode

«Artefact»
Chaincode
Versions

«Artefact»

«use»«use»«use»

Fig. 1. Component diagram of the Master Chaincode-based approach

B. Containerized Approach
The fact that HLF chaincode runs in Docker containers

makes it possible to design more complex architectures, such
as parallel execution of code through multithreading. The idea
is to package the entire n+1 versions into one self-contained
unit that can be installed on a peer just like any regular
chaincode.

Instead of exposing the peer’s interface to the chaincode
implementations so they can read the ledger contents, we
propose providing a proxy that can cache ledger reads (since
a single read of a ledger value is always sufficient, you cannot
‘read-your-write’). The final read/write set is built by the NVP
Controller (NVC) component based on the reads intercepted
by the proxy and the writes suggested by the chaincode
variants. In the simplest case, differing read-write sets may be
considered erroneous. Alternatively, the NVC may implement
logic that can combine the individual versions’ read-write sets,
provided they are compatible. A possible architecture can be
seen in Figure 2. NVC and NVX refer to NVP Controller and
NVP Executor, respectively.

One possible way to adopt this approach in software is by
using Java threads and the active object pattern. Implementa-
tions of the same chaincode specification interface are known
by the controller class. After ensuring the validity of the input,
the implementations are executed in parallel.
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Fig. 2. Component diagram of the containerized approach

IV. O-VERSION PROGRAMMING

Instead of installing multiple chaincode versions on the
peers either directly or using the architecture outlined pre-
viously, it is possible to rely on the consensus mechanism of
HLF. In this case, organizations or peers may have their own
chaincode version installed independently. In some contexts,
this might even be a requirement; for example, consider a
weather forecast service where several clients attempt to sub-
mit their sensor data to the ledger. The supporting chaincode
can be the organization’s own as long as it implements the
same specification as all others.

Contrary to the other approaches, there is no specialized
voter component in this method. Deciding which versions’
results are correct is deferred to the platform’s consensus
protocol: in the end, the configured endorsement policy deter-
mines the outcome. For example, for maximum fault tolerance
(at the cost of low availability), given n peers hosting their own
versions, an n : n endorsement policy ensures that either every
single implementation has the same active software fault (quite
unlikely) or the correct results are appended to the ledger.
Otherwise, the transaction is rejected. Note that we do not
take special client application side logic into consideration,
i.e. clients are assumed not to discard any endorsements.

Figure 3 contains an overview of this strategy: even if one
of the chaincode variants is faulty, the policy of at least two
endorsements needed ensures that at least one correct chain-
code is executed for each transaction, producing disagreeing
results.

A. Effects on Attack and Fault Tolerance

An interesting aspect of this approach is that it enhances
the ledger integrity-preserving role of endorsement; usually, all
peers have the same single implementation of the chaincode,
and endorsement ensures that no malicious organization or
peer can alter ledger contents to their advantage. In the follow-

%CC1

p1

!CC3

p3

!CC2

p2

Endorsement Policy 2 : 3

REJECT

Fig. 3. Overview of consensus-based NVP

ing, we examine how this standard function of endorsement
is affected by OVP.

Consider a network of six organizations: three are running
version A of a chaincode specification, and the other three
are running version B. If we assume one of the two versions
faulty, it follows that at least four organizations’ endorsements
should be required to ensure integrity. This way, even if all
three organizations with the faulty chaincode version propose
to append the same faulty transaction to the ledger, the
additionally required fourth organization, which certainly has
a fault-free implementation, will prevent the undesired ledger
update. Figure 4 offers a visualization of this example for
better understanding.

Org1

%CC1

Org4

!CC2

Org2

%CC1

Org5

!CC2

Org3

%CC1

Org6

!CC2

Fig. 4. Two chaincode versions distributed among six organizations
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Optimal Endorsement Policy Based on Diversity, Faults,
and Malicious Organizations: For simplicity, let us assume,
for the remainder of this section, that every organization
only maintains a single peer node (in reality, the number of
peers per organization is an additional factor to consider).
The question the answer to which we seek is the following:
given n ∈ N+ peers (any positive integer) and v ∈ {1 . . n}
chaincode versions, what k : n endorsement policy is required
(expressed as bestk) to tolerate m ∈ {0 . . n − 1} malicious
peers if f ∈ {0 . . v − 1} of the versions are faulty? We make
the following observations:

• In any case, at least one endorser is necessary, so bestk
is at least 1.

• Any m number of malicious parties implies the require-
ment of m more endorsements.

• For an f number of faulty chaincode versions, the policy
must be altered to include f times the number of peers
who have that version, which is n/v (assuming a uniform
distribution).

Based on the above, Equation 1 can be obtained as a
function of four variables. For the sake of visualization, we
combine the values of n and v into a single variable r = v/n
we call the diversity ratio – Figure 5 shows a 3D surface plot
of the thus obtained function. The plot has been made with
a fixed zero value for the number of malicious organizations,
but different values of m would merely shift the plot along the
z (vertical) axis. As for the other input values, n, v ∈ {1 . . 10}
(therefore r ∈ {1/10, 2/10, . . . , 1}) and f ∈ {0 . . 9}.

bestk(n, v, f,m) = 1 +m+ f
n

v
(1)

The result shows that for low diversity ratios and a high
amount of software faults, very intolerant endorsement policies
are necessary, as expected. With higher chaincode diversity,
the plot flattens. Software faults have a much higher impact
on the necessary endorsement policy than the number of
malicious organizations to tolerate – this makes sense, as
several organizations might be running the same version.
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Fig. 5. 3D surface plot of the bestk function

V. CONCLUSION AND FURTHER WORK

In our work, we proposed revisiting classic N-Version
Programming to address the impact of software faults in

chaincode, which can increase fault tolerance by means of
increasing software diversity. We have presented two entirely
different ways of its integration: a ‘classic’ approach and
‘O-Version Programming.’ As the latter builds on the same
mechanism of the network, which ensures its high integrity,
consensus, we briefly analyzed its impact by observing how
the number of chaincode versions and the number of software
faults interplay with the endorsement policy and the number
of malicious participants in the network.

We conclude that when consensus is used for NVP, the
choice of endorsement policy mostly depends on the number
of chaincode versions and the number of peers. We have
offered an architectural design for the ‘classic’ style (instead
of relying on consensus, each peer has the same n versions),
which we would like to prototype as future work to demon-
strate its viability. There may be additional models of NVP
implementations, which are yet to be explored; for example,
using Fabric v2’s external chaincode service features.

REFERENCES

[1] V. Dhillon, D. Metcalf, and M. Hooper, The DAO Hacked. Berkeley,
CA: Apress, 2017, p. 67–78.

[2] J. J. Honig, M. H. Everts, and M. Huisman, “Practical mutation
testing for smart contracts,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology, C. Pérez-Solà, G. Navarro-Arribas,
A. Biryukov, and J. Garcia-Alfaro, Eds. Cham: Springer International
Publishing, 2019, p. 289–303.

[3] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defectchecker:
Automated smart contract defect detection by analyzing EVM byte-
code,” IEEE Transactions on Software Engineering, vol. 48, no. 7, p.
2189–2207, 2022.

[4] J. Zhang, L. Tu, J. Cai, X. Sun, B. Li, W. Chen, and Y. Wang,
“Vulnerability detection for smart contract via backward bayesian active
learning,” in Applied Cryptography and Network Security Workshops,
J. Zhou, S. Adepu, C. Alcaraz, L. Batina, E. Casalicchio, S. Chattopad-
hyay, C. Jin, J. Lin, E. Losiouk, S. Majumdar, W. Meng, S. Picek,
J. Shao, C. Su, C. Wang, Y. Zhauniarovich, and S. Zonouz, Eds. Cham:
Springer International Publishing, 2022, p. 66–83.

[5] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Transactions on Software Engineering, vol. SE-11, p. 1491–1501, 01
1986.

[6] ——, “The methodology of n-version programming,” Software fault
tolerance, vol. 3, p. 23–46, 1995.

[7] J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,” IEEE
Transactions on Software Engineering, vol. SE-12, no. 1, p. 96–109,
1987.

[8] A. Gujarati, S. Gopalakrishnan, and K. Pattabiraman, “New wine in an
old bottle: N-version programming for machine learning components,”
in 2020 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), 2020, p. 283–286.

[9] H. Xu, Z. Chen, W. Wu, Z. Jin, S.-y. Kuo, and M. Lyu, “NV-DNN:
Towards fault-tolerant DNN systems with n-version programming,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), 2019, p. 44–47.

[10] F. Machida, “N-version machine learning models for safety critical
systems,” in 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), 2019, p. 48–51.

[11] A. Wu, A. H. M. Rubaiyat, C. Anton, and H. Alemzadeh, “Model fu-
sion: Weighted n-version programming for resilient autonomous vehicle
steering control,” in 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), 2018, p. 144–145.

[12] L. Breidenbach, P. Daian, F. Tramèr, and A. Juels, “Enter
the hydra: Towards principled bug bounties and exploit-resistant
smart contracts,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, 08 2018,
p. 1335–1352. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/breindenbach

36



Knowledge-driven Exploratory Performance Data 

Analysis for Execute-Order-Validate Blockchains 
 

Noor Al-Gburi   

Department of Measurement and Information Systems 

Budapest University of Technology and Economics 

Budapest, Hungary 

noor.algburi@edu.bme.hu 

 

Imre Kocsis 

Department of Measurement and Information Systems 

Budapest University of Technology and Economics 

Budapest, Hungary 

kocsis.imre@vik.bme.hu 

 

 

Abstract— Exploratory data analysis (EDA) of the 

performance characteristics of complex IT systems, such as 

enterprise blockchain solutions, would significantly benefit 

from explicit representations of, and inference on knowledge 

about the analyzed system. However, connecting EDA and 

knowledge representation is not part of the current practice.  As 

a novel approach, this paper presents a generic hierarchical 

activity ontology, connected to Hyperledger Fabric experiments 

with end-to-end delay, endorsement delay, ordering delay, and 

block validation observations. On this basis, we present rules for 

inferring knowledge-based visualization declarations on this 

ontology. Lastly, we generate Jupyter notebooks for the inferred 

sequence of visualizations. 

Keywords—Ontology-based approach, Hyperledger Fabric, 

Knowledge-based, Exploratory Data Analysis. 

I. INTRODUCTION  

The performance characteristics of complex IT systems 
heavily rely on empirical methods. Exploratory Data Analysis 
(EDA) [1] is fundamental to performing data analysis. EDA is 
a highly visual process where the investigation process of data 
is not prescribed; rather, a few best practices complement the 
intuition of the data analyst. However, for truly complex 
systems, described through many observational variables, 
simple intuitive “detective work” becomes inefficient and 
intelligent guidance becomes necessary. Approaches such as 
grand tours [2] exist, but these consider only the statistical 
properties of the data, and not its inherent structure related to 
the described processes. 

On the other hand, recently, significant progress has been 
made in the knowledge-based characterization of the 
observable performance properties of IT systems [3]. The core 
idea of this research is to utilize such explicit knowledge 
representations for the sake of guiding EDA. The underlying 
intuition is that data analysts tend to have a “default style” of 
EDA, either by personal preference or motivated by domain 
knowledge, which primarily depends on the type of the 
described processes and not the data. 

Thus, for a given system class, for instance, hierarchically 
composed parallel-sequential task executions, there is a 
“sensible” progression of “usual” plot types, which can be 
inferred from the composition of the processes. 

In this paper, we present an elaboration of this idea which, 
to the best of our knowledge, has not been tackled yet in the 
literature. 

 

Figure 1. Overview of the proposed approach 

An existing ontology for hierarchically composed parallel-
sequential task executions [4] serves as an abstract observed 
behavior class. We created a specialization of this ontology, 
which describes the hierarchically composed parallel-
sequential tasks performed during a part of the consensus 
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process in the blockchain platform Hyperledger Fabric (HLF).  

We extend this ontology so that it can reference specific 
observation sets of a TPC-C implementation over Fabric [5], 
stored in .csv files. 

As a next step, we propose a rule based on the abstract 
ontology to determine a “sensible sequence” of plots for 
performing EDA on the specific Fabric observational data. 
The plots are created by the rules as a set of “plot individuals” 
in the ontology domain, ordered by EDA plot sequence 
ordering properties. 

Finally, a pluggable “last mile” step is proposed to 
translate the EDA plot individuals and their ordering to the 
specific technology used for EDA; currently, Python cells in 
notebooks. Fig. 1 depicts the proposed approach. 

The remainder of the paper is structured as follows. 
Section 2 introduces an overview of using knowledge bases to 
describe visualization and the related work. Section 3 
discusses the trace processing and the endorsement visual 

analytics of Hyperledger. Section 4 presents the rule-based 
inference of visualization. Section 5 concludes this paper. 

II. KNOWLEDGE-BASED CHARACTERIZATION OF 

VISUALIZATION 

Visual exploration of empirical data is a proven tool in 
setting up extra-functional behavioral models for IT systems, 
as well as diagnosing them in comparison to explicit as well 
as implicit models of expected behavior [6]. However, making 
such analytic endeavors efficiently repeatable is an open 
research problem. Certainly, for a given type of system and 
given analytic goal, data analytic templates (e.g., analysis 
notebooks) can be created, but these neither provide insight 
into the implemented process readily nor are easily adaptable 
to insights found during the process or changes in the analyzed 
system. Another challenge is that tying computer-aided 
exploration suggestions – classically techniques such as 
projection pursuits and grand tours, nowadays “autoML” 
methods – into the process is not straightforward. 

Intuitively, what can be suspected as the underlying 
problem is the lack of explicit formulations, and reasoning 
about, the visual analytic process of IT system observations 
itself. Supporting this hypothesis in a broader context, 
recently, there have been calls [7] for creating explicit theories 
of (graphical) inference, to transform EDA into an activity 
which looks for deviation from some “norm” (the challenge 
is, certainly, that the “norm” is in most cases an implicit, 
ambiguous, and highly qualitative model in the mind of the 
analyst). 

Following in the footsteps of data science process models 
(such as CRISP-DM), explicit ontology-based descriptions of 
the ‘what” and “how” of visually assisted machine learning 
processes are also emerging [8]. Knowledge Graphs have 
been proposed to capture users’ visual analytics workflows 
[9]. Using ontology-expressed knowledge to provide user 
guidance during visual analytics also has some prior art; 
however, as [10] points out, the guidance generation process 
is currently poorly understood and expressible in general 
terms. 

Our initial inroad to the specific research problem here 
relies on a hierarchical domain ontology, which captures 
system behaviour in abstract terms as well as the specifics of 
actual system deployments. 

 

III. KNOWLEDGE-BASED CHARACTERIZATION OF 

MEASUREMENTS 

General semantic data analysis is an open research topic. 
It is challenging to automatically identify hidden relations 
among a general set of variables to aid later data analysis 
phases. However, given a specific domain and a priori 
knowledge of relations among domain concepts can benefit 
greatly from such domain-specific knowledge. [4] has shown 
how a semantic model of system activities and services with 
multiple levels of abstraction can guide measurement data 
correlation, calculation, and validation steps.  

A. Knowledge-based trace processing for HLF 

[4] uses the Hyperledger Fabric blockchain platform as an 
example. Blockchain is an essential technology that can 
decentralize the way we store, share and information and data. 
One of the newer blockchain platforms that emerged is 

Figure 2 Concepts of the endorsement and transaction 

processing ontology with individuals 
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Hyperledger Fabric, a project of the Hyperledger Foundation 
community. It is a global collaboration, hosted by The Linux 
Foundation. 

 HLF is an open-source blockchain platform [11]. 
Hyperledger Fabric is an implementation that enables 
permissioned blockchains, which provide a general 
blockchain framework with identifiable participants for a 
variety of business applications. In contrast to public 
networks, Hyperledger Fabric's performance is highly 
engineerable, which also means that network design decisions 
must be validated from the performance point of view. 

 Fabric supports the deployment of general-purpose smart 

contracts on the network nodes, called ”chaincode”, that can 

manipulate the shared state through atomic transactions. 

Network-level consensus begins with an “endorsement” 

phase (a client requests smart contract simulation from 

network peers). The collected endorsements are ordered and 

put into blocks by the so-called ordering service, which 

finishes consensus by distributing the blocks to network 

nodes for validation and incorporation into the blockchain. 

For further details, see [11]. 

In [4], a detailed activity model for distributed transaction 

processing (such as the HLF consensus process) facilitates 

the correlation and availability check of distributed activity 

traces. The activity model of the HLF case study defined the 

measured temporal data of activities, associated with the 

service types logging them. Accordingly, the prerequisite 

trace correlation step simply followed the structure of the 

model to check whether all supposedly measured data are 

available from all sources. The checks successfully revealed 

a number of data anomalies. 

B. Extensions for endorsement visual analytics 

The endorsement phase of HLF consensus is particularly 
important in HLF performance engineering [12]. We have 
created an ontology refinement to describe the endorsement 
phase of HLF consensus (including end-to-end transaction 
processing), represented as hierarchical sequential parallel 
activities from [4]. The main concepts are depicted on Fig. 2. 
In addition to describing a hierarchical sequential-parallel 
process, the ontology can host references to observations on 
the activities, stored in CSV files. 

The model details the high-level, sequential steps of HLF 
end-to-end transaction processing. The first, Awaiting 
Endorsement activity has parallel sub-activities with the type 
endorsement (the entire transaction begins with the client 
getting an endorsement from the peers). Awaiting Ordering 
and Validation is modelled by two consecutive sub-activities: 
Block inclusion (that is an atomic activity) and the client 
Awaiting Validation from any peer (denoted by any 
synchronization semantic).  

Instances of individuals represent the low level of the 
ontology that makes a relationship with identified data 
properties of the classes, for example; everything in the class 
hierarchy of the transaction processing has a unique identifier 
(ID); in this model we have individuals like the individual 
indTransactionProcessing that has a class of Transaction 
Processing, or the individual indBlockInclusionOrdere0 
which has a class of Block Inclusion. Moreover, we also have 
indEndorsementPeer0 and indEndorsementPeer1: 
individuals which have a type of Endorsement (in this 
individual level will take one awaiting endorsement which has 
type Awaiting Endorsement), and four individuals for the 
validation indBlockValidationAndCommitPeer0/1/2/3. 

IV. RULE-BASE INFERENCE OF VISUALIZATION 

The simplest EDA-supporting framework for 

characterizing the performance (latency and throughput) of 

hierarchically composed parallel-sequential activities 

implements a breadth-first search over the refinement tree of 

the activities. In this refinement tree, questions regarding the 

relationship between the latencies and throughput of the 

refining and refined activities can be investigated. Fig. 3 

provides an example of the hierarchical end-to-end latency 

breakdown visualization of transactions, as comprehended by 

the client.  

Currently, we are investigating the use of SWRL [13] rules 
to infer a breadth-first search style progression of parallel 
coordinates plot declarations for any modelled HLF 
deployment (and annotation-connected observation set), 

Figure 3. Visualization of the execution time of a transaction activity and its sequential refinement 
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based on the activity refinement relations captured  through 
the abstract ontology. Fig. 4 demonstrates the pattern-
matching concept. 

The role of the SWRL rules is to create new visualization 
objects, typed by a simple visualization ontology, which 
among themselves have a partial order relationship and 
indirectly point to the .CSV files and columns to be visualized. 
For example, we can add SWRL rules to suggest 
visualizations for every activity based on the structures of the 
ontology or add a data property to the abstract activity class. 
As a simple example, when investigating the hierarchical 
model, we can say that if there is an activity which is either a 
parallel, or forked activity and has sub-activities, then fill a 
data property with a “string flag” such as “Create parallel 
Coordinates with children”: 

hasSubactivity (?sub, ?sa)  -> 

visualization_directive(?sub,  "Create 

Parallel coordinates with children") 

This enables us to distinguish what to plot after transposing 
these entities to a sequence of Python cells in a Jupyter 
notebook implementing the necessary data loading and the 
inferred visualizations. 

V. SUMMARY 

 Exploratory data analysis (EDA) of the performance 
characteristics of complex IT systems, such as enterprise 
blockchain solutions, would significantly benefit from explicit 
representations of, and inference on knowledge about the 
analyzed system. In this paper, we presented a specification of 
hierarchically composed parallel-sequential task executions 
and extended this ontology with an endorsement activity and 
transaction processing ontology to reference a specific set of 
observations of a TPC-C implementation over a Fabric 
network. SWRL rules will enable generating comparative 
visualization directives for each level of the composition, and 
their suggested analysis order. As a last step, the inferred 
series of visualizations – to support EDA – will be transposed 
to a Jupyter notebook. 

The proposed approach, however, only addresses the 
challenge of rapidly creating built-in “styles” of EDA for wide 
ranges of HLF deployments. As a next step, our research will 
target coupling knowledge-based visualization inference with 
data-based intelligent guidance for EDA. 
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Abstract—In multitask federated learning, when small
amounts of data are available, it can be harder to achieve
proper predictive performance, especially if the clients’ tasks
are different. However, task heterogeneity is common in modern
Drug-Target interaction (DTI) prediction problems. As the data
available for DTI tasks are sparse, it can be challenging for
clients to synchronize the tasks used for training. In our method,
we used boosting to enhance transfer in the multitask scenario
and adapted it to a federated environment, allowing clients to
train models without having to agree on the output dimensions.
Boosting uses adaptive weighting of the data to train an ensemble
of predictors. Weighting data boosting can induce the selection of
important tasks when shaping a model’s latent representation.
This way boosting contributes to the weighting of tasks on a
client level and enhances transfer, while traditional federated
algorithms can be used on a global level. We evaluate our results
extensively on the tyrosine kinase assays of the KIBA data set
to get a clear picture of connections between boosting federated
learning and transfer learning.

Index Terms—federated learning, multitask learning, boosting,
DTI

I. BACKGROUND

In the past years, drug discovery has become more and more
reliant on the use of machine learning [1]. For a long time,
drug discovery was mostly conducted with in vitro tests on
candidates. But these types of tests are expensive and time-
consuming to execute thus, they do not scale well for the large
amounts of available drug candidates [2]. Machine learning
has the advantage of scalability and relatively low resource
costs thus, it can complement traditional tests well. Modern
drug discovery problems usually involve a model which can
select or narrow down a list of drug candidates which are
further tested in laboratories [3].

The motivation for our work is a federated drug-target
interaction problem. In this, we try to predict which chemical
compounds (drugs) will bind to which biological targets (e.g.
proteins) in the human body, to induce a change in the
organism [4]. For this task, there is already a large amount
of data available [5]–[7]. The historically used compounds of
drugs usually have multiple targets to which they are likely

This research was funded by the J. Heim Student Scholarship, OTKA-
K139330, the European Union project RRF-2.3.1-21-2022-00004 within the
framework of the Artificial Intelligence National Laboratory, New National
Excellence Programme of the Ministry of Innovation and Technology, code
number ÚNKP-22-2-I-BME-70, funded by the National Research, Develop-
ment and Innovation Fund.

to bind hence the only job is to find these targets. The data
on targets is available through assays. Assays are procedures
to analyze the qualities of a given target. In this case, this
means the identification of drugs that bind or do not bind to
any given target. A usual DTI task is built up in the following
way: multiple assays are available for one target, and assays
are only conducted for some compounds (and not all available)
to save resources. After the collection of assays, they can be
arranged into a bioactivity matrix, which contains one assay
in a column and one compound in a row. Because the assays
only have available data on interactions where they have been
measured and the measurements are only conducted where the
researchers saw a chance of interaction the resulting data is
sparse and missing-not-at-random (MNAR) type data.

To explain the motivation of federated learning (FL), we
have to look at the nature of the data. When working with
high-value data, like data on drugs, companies can be reluctant
to share it. Although in some cases the demand presents itself
to learn from a larger data set and cooperate with other compa-
nies or research institutions. In these cases, privacy-preserving
federated learning can be a useful tool for performing the
training. In federated learning, multiple parties agree to train
their models together for better performance, while their data
sets remain private and not shared. This can be achieved in
a multitude of ways. One of the most prominent examples
is Federated Averaging (FedAvg) [8], which uses a shared
model architecture and averages the models’ weights every
few iterations.

Multitask learning is a natural extension of this setup
as it enhances the performance of models on targets when
learned jointly [9]. However multitask learning also presents
challenges, namely selecting tasks in a way to achieve the
best possible performance [10]. To solve this we introduce an
adaptive weighting by the use of boosting. This way at the
beginning of training no task selection is necessary instead
the data will be weighted in every iteration to maximize the
performance of models.

Boosting is a highly versatile method, thus it can be used
for drug research too. In [11] Svetnik et al. showed that tree-
based boosting is especially useful in Quantitative structure-
activity relationship (QSAR) problems, where the goal is
to predict bioactivity from structural features, much like in
DTI. However, in an FL scenario boosting is still a relatively
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new concept and only a handful of solutions exist. Most
of these are from the field of gradient boosting: One of
these is SecureBoost [12], which is a framework for gradient
boosting by decision trees, however, it only works in vertical
FL scenarios, when the data is only distributed in the feature
space, not in the sample space, which is a strong assumption.
In [13] Li et al. create a similarity-based federation for gradient
boosting, where each party makes their data public through
hashing and they train models on the hashed features. These
approaches are significantly different from AdaBoosting, and
in the next chapter, we give a detailed explanation, of why
AdaBoost is a good fit for the problem at hand. The adaptation
of boosting to multitask can also be done in several ways:
Wang et al. [14] created the Online Multitask Boosting (OMB)
algorithm, which is the generalization of a transfer learning
boosting algorithm. Their algorithm captures task relatedness
by calculating the differences in errors of the ensemble on
the two tasks. In their algorithm, some tasks are used to train
models of the ensemble and every task learns to adapt them
by assigning its own weight to the output of the classifier.
A different approach is described by Zhang et al. [15] in
a technique they call MTBoost. In MTBoost they learn the
relationships of tasks in the form of a task covariance matrix.
First, they learn an ensemble, for a base hypothesis and
generate the output for every task by learning the weights
specifically for them. The base hypothesis can be formulated
by learning an aggregated ”super-task” based on the task
covariances.

In our work, we aim to combine the best of all these
approaches in a way that makes it feasible to create a multitask
ensemble of neural networks in a federated manner, which
leverages the adaptive weighting of samples to boost predictive
performance. To do this we create a combination of the
FedAvg and the AdaBoost algorithms, using neural networks
as base classifiers. We present our results on the KIBA data
set, with a realistically constructed federated split for the data.

II. METHOD

To understand federated boosting, we start from the same
setup as the FedAvg algorithm: Every client has their own data
set, with possible overlaps in both the compound- and target
spaces. In the beginning, the clients assign a uniform weight
to each of their compounds: ωi0 = 1/N, i = 1, 2, . . . , N

After this, the server initializes the model weights wt and
distributes them to the clients. The clients run a local training
sequence on the model, in my experiments, this means one
epoch of training the network. Next, the clients send their
models back to the server for aggregation (alternatively, like in
FedAvg it is enough to send the gradients). The server averages
the weights and produces the final model, which will be part
of the ensemble.

wt ←
K∑

k=1

nk

n
wk

t (1)

After this, the model is sent back to the clients and they
calculate the error of the model on their data using the formula

from AdaBoost, with the difference being, that we classify
a compound as correctly classified if a given threshold of
correctness is reached on its predictions. In my measurements,
this meant that 80% of a compound’s measurements are to
be predicted correctly for the compound to be classified as
correct.

Errort =
n∑

i=0

ωi(t−1) ∗ Iyi ̸=ŷi
(2)

Based on the error, they assign an individual weight to the
model (same as AdaBoost).

αt =
1

2
log(

1− Errort
Errort

) (3)

Now the partners know the weight of the model, they can
reweight the data and start the training again with new weights
from the server.

Algorithm 1 FedMTBoost
1: Initialization on the clients:
2: Initialize the observation weights ωi0 = 1/N , i =

1, 2, . . . , N
3: initialization of ensemble E = {}
4: initialization of η learning rate
5: Computed on the server:
6: for t = 1, 2, . . . do
7: initialization of wt

8: St = set of clients
9: for k ∈ St clients do

10: Send wt to k
11: Recieve wk

t

12: end for

13: wt ←
|St|∑
k=1

nk

n wk
t

14: sending wt to clients
15: end for
16: Computed on clients:
17: for epoch ∈ Epochs do
18: batches ← partitioning data to B partitions
19: for b ∈ batches do
20: w ← w − η∇l(w; b;ω(t−1))
21: end for
22: end for
23: Sending weights to server.
24: Receiving averaged wt

25: E ← E ∪ {wt}
26: Compute error Errort =

∑n
i=0 ωi(t−1) ∗ Iyi ̸=ŷi

27: Compute αt =
1
2 log(

1−Errort
Errort

).

28: Set ωit ← ωi(t−1) ∗ e−1
Iyi ̸=ŷi ∗αt , i = 1, 2, . . . , N .

The FedMTBoost algorithm can be viewed from a global
point, and this way it is essentially carrying out the same steps
as FedAvg, but when it is viewed from the clients’ local point
it resembles the AdaBoost algorithm, with the managing of
weights during training.
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Fig. 1. High-level overview of FedMTBoost.

When predicting for new data, every client can use the
shared ensemble and create a weighted average using their
private model weights.

III. RESULTS

To make sense of different technologies affecting the results
of training and the methods’ dependence on data we have de-
vised a set of experiments to be evaluated on different dataset
sizes. The experiments can be split along three axes: singletask
and multitask, boosted and non-boosted methods, and finally
based on the type of federation: singleparty, multiparty and
federated. This resulted in the following experiments (with
each having a single- and a multitask variant):

• Singleparty single Multilayer perceptron (MLP) model:
All data pooled and one model trained

• Singleparty boosted: All data pooled and AdaBoost en-
semble trained

• Multiparty single MLP model: Data distributed to 10
clients and everyone trains an MLP on their part of the
data

• FedAvg: Data distributed and partners train MLP in a
federated way, with the FedAvg algorithm

• FedMTBoost: Data distributed and clients train an en-
semble with the FedMTBoost algorithm

A. Technical details

The methods were evaluated on the tyrosine kinase assays
of the KIBA dataset, which resulted in 60 tasks unevenly
distributed in the multiparty scenarios. The MLP was based
on the SparseChem [16] implementation with one hidden layer
with a size of 1400, using Adam optimizer. The federation of
data happened both in the compound and the assay spaces,
which means that averaging is only possible in the first layer,
and not on the output (as different clients might use entirely
different assays). We compare the AUROC scores of the
methods on a five-fold dataset, with fold ”0” always being
used for evaluation. For folds 1, 2, 3 and 4, every possible
subset is used for training, with the complementary folds being
used for evaluation too.

B. Comparing singleparty methods

To see what effect boosting has on a baseline MLP method
we first evaluated them on the whole dataset. The results below
show the performances of boosting and MLP-based training,
which as we can see in this scenario is not significant. The
results are similar in a singletask training, but with worse
performances.

Fig. 2. AUROC scores and DeLong p-values of singleparty methods for every
set of folds used in training.

TABLE I
SINGLEPARTY AVERAGE AUROC SCORES FOR 4 FOLD TRAININGS

Singletask Multitask
MLP 0.7249 0.7885

Boosting 0.7062 0.8007

C. Comparing multiparty methods

The more interesting results come, when the data is dis-
tributed and not every client has access to every assay and
compound. First to get a baseline every client trains a model
for themselves without federation, and this can be compared
with the federated methods instead of a singleparty perfor-
mance.

When looking at federated averaging we can see that for
partners with enough data it does improve the predictive
performance, which is expected as more information is present
for these types of models, and they are able to develop a better
representation. Although the improvement is present it is not
statistically significant in most relevant cases. As a significance
threshold of p = 0.05 would be required.

The case for FedMTBoost is different: It can improve
the predictive performance of FedAvg and multiparty MLPs.
The improvements here are in most cases significant and are
present in both multitask and singletask scenarios. In Fig. 4
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Fig. 3. AUROC scores and DeLong p-values of multiparty and federated
methods for every set of folds used in training.

we can see the performance of partner 8, which is one of
the larger partners, but it can demonstrate the usual scale of
improvements.

Fig. 4. AUROC scores and DeLong p-values of federated methods for every
set of folds used in training.

It is important to note that the most significant differences
were achieved when not all the data was present for training.

IV. CONCLUSION

As we showed Federated Boosting is a possible and useful
approach that is adaptable to both single- and multitask
environments. It does improve the predictive performance of
FedAvg by leveraging data weighting from boosting. This

TABLE II
MULTIPARTY AVERAGE AUROC SCORES FOR 4 FOLD TRAININGS ON

PARTNER 8

Singletask Multitask
Multiparty MLP 0.6625 0.725

FedAvg 0.6235 0.7374
FedMTBoost 0.7325 0.7445

proves that ensemble methods are a good fit to use in federated
learning.
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