
An Overview on Code Synthesis and

Runtime Verification

A Broad Vision of our Goals and Achievements

 Gergely Pintér

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Key Achievements

Presented in my Thesis

 A formal semantics for UML state machines

 A method for the automatic implementation

of UML state machines

 Two verification methods for the runtime

evaluation of state-based behavior

Key Achievements

Presented in my Thesis

 A formal semantics for UML state machines

 A method for the automatic implementation

of UML state machines

 Two verification methods for the runtime

evaluation of state-based behavior

Semantics

• What does a complex

statechart actually

mean?

Key Achievements

Presented in my Thesis

 A formal semantics for UML state machines

 A method for the automatic implementation

of UML state machines

 Two verification methods for the runtime

evaluation of state-based behavior

Code Synthesis

• How to implement the

control structure described

by a statechart?

• Demonstrated by code

generation for a μC based

device.

Key Achievements

Presented in my Thesis

 A formal semantics for UML state machines

 A method for the automatic implementation

of UML state machines

 Two verification methods for the runtime

evaluation of state-based behavior

Runtime Verification

• How to check that the

application actually behaves

according to its specification?

• How to add extra timing related

requirements to a statechart

and check them during runtime?

Key Achievements

Presented in my Thesis

 A formal semantics for UML state machines

 A method for the automatic implementation

of UML state machines

 Two verification methods for the runtime

evaluation of state-based behavior

Key Achievements

Presented in my Thesis

 A formal semantics for UML state machines

 A method for the automatic implementation

of UML state machines

 Two verification methods for the runtime

evaluation of state-based behavior

Research Focus:

• Unambiguous specification,…

• …automatic implementation and…

• …runtime verification of…

complex control structures

Key Achievements

Presented in my Thesis

 A formal semantics for UML state machines

 A method for the automatic implementation

of UML state machines

 Two verification methods for the runtime

evaluation of state-based behavior

Research Focus:

• Unambiguous specification,…

• …automatic implementation and…

• …runtime verification of…

complex control structures

When talking about

“Control Structures”…

• We are talking about control concept of

programming and modeling languages

(e.g., do-while loops, if-else branches,

functions, even processes or threads)…

• …and not process control concepts like

PID controllers, ZOHs, etc.

• …i.e., “how C/C++/Java/etc. statements

are organized into a program”

Let’s Focus a Bit on

Automatic Code Synthesis…

 Originally aimed benefits:

 Substitution of a labor-intensive error-prone

task with a proven correct automatic tool

 Reduction of development costs

 Human effort, time, maintenance cost

 Increase in code quality

 Complex, hard to understand parts generated

automatically

 Human focus on key tasks (i.e., atomic activities), boring

labor-intensive maintenance of the control structure

carried out by a tool

Let’s Focus a Bit on

Automatic Code Synthesis…

 Originally aimed benefits:

 Substitution of a labor-intensive error-prone

task with a proven correct automatic tool

 Reduction of development costs

 Human effort, time, maintenance cost

 Increase in code quality

 Complex, hard to understand parts generated

automatically

 Human focus on key tasks (i.e., atomic activities), boring

labor-intensive maintenance of the control structure

carried out by a tool

Let’s Focus a Bit on

Automatic Code Synthesis…

 Originally aimed benefits:

 Substitution of a labor-intensive boring task

with a proven correct automatic tool

 Reduction of development costs

 Human effort, time, maintenance cost

 Increase in code quality

 Complex, hard to understand parts generated

automatically

 Human focus on key tasks (i.e., atomic activities), boring

labor-intensive maintenance of the control structure

carried out by a tool

Citation form

an actual CPU

expert

Let’s Focus a Bit on

Automatic Code Synthesis…

 Originally aimed benefits:

 Substitution of a labor-intensive boring task

with a proven correct automatic tool

 Reduction of development costs

 Human effort, time, maintenance cost

 Increase in code quality

 Complex, hard to understand parts generated

automatically

 Human focus on key tasks (i.e., atomic activities), boring

labor-intensive maintenance of the control structure

carried out by a tool

But why should a

programmer understand

the inner details of a

multi-core CPU?
(That may have not even

been manufactured yet…)

Citation form

an actual CPU

expert

Let’s Focus a Bit on

Automatic Code Synthesis…

 Originally aimed benefits:

 Substitution of a labor-intensive boring task

with a proven correct automatic tool

 Reduction of development costs

 Human effort, time, maintenance cost

 Increase in code quality

 Complex, hard to understand parts generated

automatically

 Human focus on key tasks (i.e., atomic activities), boring

labor-intensive maintenance of the control structure

carried out by a tool

Idea
Extend visual control models

with information about the

most beneficial platform and

do the mapping

automatically by the control

code synthesis tool

Presentation Structure

Demonstration

Achievements Until Now

Wide Context and Future Research Goals

Presentation Structure

Demonstration

Achievements Until Now

Wide Context and Future Research Goals

Presentation Structure

Demonstration

Achievements Until Now

Wide Context and Future Research GoalsWarning: The next part of the presentation is

mostly brain storming about future research

activities. Do not expect proven, fine-tuned

solutions! Our goal here is to give a broad

overview on our planned work and discuss our

and your ideas concerning the subject.

18

Control Hierarchy

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

State-Transition Model

• UML statecharts

• Matlab/Stateflow diagrams

• Harel statecharts, etc.

State 2

entry/…

State 2A

entry/…

State 2B

entry/…

State 1

exit/

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

State-Transition Model

• UML statecharts

• Matlab/Stateflow diagrams

• Harel statecharts, etc.

State 2

entry/…

State 2A

entry/…

State 2B

entry/…

State 1

exit/

Top-level

organization of

activities

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Detailed Activity Model

• UML activity diagrams

• Matlab/Stateflow diagrams

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Detailed Activity Model

• UML activity diagrams

• Matlab/Stateflow diagrams

Detailed

specification of

activities

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Process/Thread Model

• Top-level structure of the

source code

(approximately)

src/

signal_processing/

Makefile

some_dsp_library.c

io/

Makefile

some_io_library.c

Makefile

main.c

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Process/Thread Model

• Top-level structure of the

source code

(approximately)

src/

signal_processing/

Makefile

some_dsp_library.c

io/

Makefile

some_io_library.c

Makefile

main.c

Assignment of activities to

program images thus selection

of target architecture (Makefiles

are shown for a reason)

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Methods, Statements

• Source code of methods

#ifndef SOME_IO_LIBRARY

#define SOME_IO_LIBRARY

int

some_io_method() {

for (…)

if (…) {

// …

} else {

// …

}

}

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Methods, Statements

• Source code of methods

#ifndef SOME_IO_LIBRARY

#define SOME_IO_LIBRARY

int

some_io_method() {

for (…)

if (…) {

// …

} else {

// …

}

}

Implementation of

activities in a high-

level language

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Machine Instructions

• Machine (assembly)

language sources

some_io_method:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movl %edi, -4(%rbp)

movl $0, -8(%rbp)

movl -8(%rbp), %eax

cmpl -4(%rbp), %eax

jge .L4

Control Hierarchy:

Typical Description Forms

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Micro-Instructions

• Implementation of

machine instructions

in the CPU

• Multiple pipelines, ALUs,

caches, etc.

Control Hierarchy:

A Chain of Jobs

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Modelers

Programmers

Compiler

CPU

Programmers (architects or lead

programmers) had to decide

about process-core allocation.

This should not be their

decision, because they are not

CPU experts.

Programmers

Control Hierarchy:

A Chain of Jobs

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Computing

resources

are here

Process

organization is

here

Control Hierarchy:

A Chain of Jobs

State-Transition Model

Detailed Activity Model

Process/Thread Model

Methods, Statements

Machine Instructions

Micro-Instructions

Computing

resources

are here

Process

organization is

here

I.e., assignment of

activities to program

images thus

architectures thus HW

resources

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

We will use this activity model as

an example (actually a mixed form

of the state and activity models for

simplicity reasons). Vertical bars

are fork/join symbols, rounded

rectangles are activities

We will use this image

for representing a

multi-core CPU

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

Top-Level Control Structure

• Some mixed view of the state-

transition and the activity models

• Consisting of dominantly

- …fixed point and

- …floating point steps

Actual CPU

• Two cores, both cores with

- …fixed point and

- …floating point ALUs

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

(Jon, programmer)

OK, so I have to

organize this

activity structure

into a program…

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

(Jon, programmer)

Hmmm, a single

threaded

executable will do

it, let’s see some

good olde’ coding…

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2

3

4

5

6

7

8

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2

3

4

5

6

7

8

…and let

the stuff

run!

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2

3

4

5

6

7

8

Time/Power

Consumption

8 8

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2

3

4

5

6

7

8

“I paid 2000 bucks for

this computer and my

game is still crawling.”

(Johnny, Gamer)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2

3

4

5

6

7

8

“I paid 2000 bucks for

this computer and my

game is still crawling.”

(Johnny, Gamer)
“Our processor is perfect, your

program is badly written. One

of the cores is entirely idle

because the entire program is

running in a single thread on a

single core.”

(Jonathan, CPU Expert)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2

3

4

5

6

7

8

“I paid 2000 bucks for

this computer and my

game is still crawling.”

(Johnny, Gamer)
“Our processor is perfect, your

program is badly written. One

of the cores is entirely idle

because the entire program is

running in a single thread on a

single core.”

(Jonathan, CPU Expert)

(Jon, Programmer)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

Maybe if I divide

the single

process into two

threads…

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

Hmmm, this will

do it, let’s see

some good olde’

coding…

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

4 5

6

7

8

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

4 5

6

7

8

…and let

the stuff

run!

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

4 5

6

7

8

Time/Power

Consumption

6 8

Wow, reduced

the execution

time by two!

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

4 5

6

7

8

“I paid 2000$ for this

laptop and it is burning a

hole in my pants.”

(Johnny, Gamer)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

4 5

6

7

8

“I paid 2000$ for this

laptop and it is burning a

hole in my pants.”

(Johnny, Gamer)

“Our processor is perfect, your

program is badly written. A

partially loaded core is running

at full clock frequency, however

the power consumption can be

reduced by decreasing core

speed.”

(Jonathan, CPU Expert)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

4 5

6

7

8

“I paid 2000$ for this

laptop and it is burning a

hole in my pants.”

(Johnny, Gamer)

“Our processor is perfect, your

program is badly written. A

partially loaded core is running

at full clock frequency, however

the power consumption can be

reduced by decreasing core

speed.”

(Jonathan, CPU Expert)

(Jon, Programmer)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

4 5

6

7

8

Maybe if during

step 2 and 4 I

decrease the core

speed can reduce

heat dissipation…

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

3

5

6

7

8

2

4

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

3

5

6

7

8

2

4

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

3

5

6

7

8

2

4

OK, this will

do it, let’s run

the stuff

again.

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

3

5

6

7

8

2

4

Time/Power

Consumption

6 6

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

3

5

6

7

8

2

4

Time/Power

Consumption

6 6

Wow, reduced

the power

consumption

by two!

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

3

5

6

7

8

2

4

“Let me draw your attention to our brand

new embedded CPU with…

• One general-purpose fixed-point

core and…

• Two high speed RISC floating

point cores.

You will be able to re-organize your

program such way that it will run even

faster with lower power consumption…”

(Jonathan, CPU Expert)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

“To exploit the benefits of the

shining new CPU…”

(Jonathan, CPU Expert)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

“…you only have to re-organize

you threads this way…”

(Jonathan, CPU Expert)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

45 6

7

8

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

45 6

7

8

“…and look: spared some

more time. Just had to re-

organize the implementation of

the top-level control structure.“

(Jonathan, CPU Expert)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

45 6

7

8

OK, that’s it. I’ve never

been a CPU expert and

never wanted to be one.

This task allocation

magic should be done by

somebody else.

“…and look: spared some

more time. Just had to re-

organize the implementation of

the top-level control structure.“

(Jonathan, CPU Expert)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

45 6

7

8

“…and look: spared some

more time. Just had to re-write

the top-level control structure.“

(Jonathan, CPU Expert)

OK, that’s it. I’ve never

been a CPU expert and

never wanted to be one.

This task allocation

magic should be done by

somebody else.“Jon is right: we are actually

missing a role here!“

(Mr. Johnson, manager)

Effects of Task-Core

Assignment

5 6

3

7

4

2

1

8

1

2 3

45 6

7

8

“Jon is right: we are actually

missing a role here!“

(Mr. Johnson, manager)

“…and look: spared some

more time. Just had to re-write

the top-level control structure.“

(Jonathan, CPU Expert)

OK, that’s it. I’ve never

been a CPU expert and

never wanted to be one.

This task allocation

magic should be done by

somebody else.

Idea:

• Annotate high-level control structure with typical resource

consumption characteristics (e.g., mostly FPU-intensive

step, mostly IO-intensive step, etc.) and…

• …do thread-core allocation automatically

In practice: extend our already existing code generation

solution with “multi-core awareness*”.

* Citation from a CPU expert

Presentation Structure

Demonstration

Achievements Until Now

Wide Context and Future Research Goals

Presentation Structure

Demonstration

Achievements Until Now

Wide Context and Future Research Goals

Achievements Until Now…

 Understanding complex control structures

 Unambiguous formal semantics for UML statecharts

 Mapped to Kripke transition systems

 Relations of activities expressed by PERT-graphs

 Support for arbitrary complexity

 This is the entry point for multi-core awareness!

 Automatic implementation of control structures

 Automatic code synthesis for ANSI-C and Java

 Demonstrated even on a Mitmot device

 …actually schedules the precisely calculated activity

PERT graphs to a single thread…

Achievements Until Now…

 Runtime verification

 Reference specification:

 UML Statecharts

 Temporal correctness criteria (PLTL)

 Not even mentioned here but at least as important as

code synthesis

Achievements Until Now…

Solving Jon’s Problem...Solving Jon’s Problem...

Still working...

Formal Semantics for Statecharts

Control Code Synthesis (Multi-Core Unaware)

Resource/Multi-Core Awareness...

Solving Jon’s Problem...Solving Jon’s Problem...

Still working...

Formal Semantics for Statecharts

Control Code Synthesis (Multi-Core Unaware)

Resource/Multi-Core Awareness...

Achievements Until Now…

By the way, this was my

PhD thesis…

Solving Jon’s Problem...Solving Jon’s Problem...

Still working...

Formal Semantics for Statecharts

Control Code Synthesis (Multi-Core Unaware)

Resource/Multi-Core Awareness...

Achievements Until Now…

By the way, this was my

PhD thesis…

Hmmm...

Presentation Structure

Demonstration

Achievements Until Now

Wide Context and Future Research Goals

Presentation Structure

Demonstration

Achievements Until Now

Wide Context and Future Research Goals

Choose our simulator

plug-in’s view

Feed in events and

check the behavior…

If satisfied, set-up code

generation properties…

…and run our code

generator to synthesize

the implementation of the

control structure.

On

Red

Off

Camera

On

Green

Yellow

Red

Yellow

Wait1Wait0

Wait2

H

Camera

Off

The demonstration was

for Java but actually we

also have ANSI-C ports.

Presentation Structure

Demonstration

Achievements Until Now

Wide Context and Future Research Goals

“Our perfect CPUs

deserve better written

programs!“

(Jonathan, CPU Expert)

“I need more processing

power with less energy

consumption for the

same price.”

(Johnny, Gamer)

“Let the CPU-specific

control structure

organization calculated

by somebody else.”

(Jon, Programmer)

Summary

