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The measurement of the spectrum of periodic signals is generally done by assuming
zero variance. However, since the phase is often random, this is not exactly true,
though generally the variance is small indeed. In the paper, expressions of the variance
of the periodogram-based spectral estimator are derived, in the case of different
windows, for periodic and for mixed periodic-Gaussian signals. Some examples are

given for the cases when the variance is significant,

1 Introduction

Well-known results concerning the variance of power
density spectrum measurements of stochastic signals using
the periodogram method can be found in the literature
(Bendat and Piersol, 1971). The (not averaged) estimator
is the so-called modified periodogram:
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In this expression, T, is the equivalent measurement time:
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X,.(f) =f x(£) w(t) exp (—j2nft) dt.
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The variance of Expn (1) is:

var {S, ()} = SA(f),

if the stochastic process is Gaussian and the spectrum does
not change rapidly.

For signals consisting of periodic components, it is also
well-known that the mean of the Expn (1) spectral estimator
of the following signal:

x(t)= Y X;cos2Qufit +¢;) )
i=1
is as follows:
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where W(f) is the Fourier transform of the window function.
Since periodic signals are generally considered as deter-
ministic ones (Bendat and Piersol, 1971), the variance is
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usually assumed to be zero, and this is often really true.
However, as the phase is generally random relating to the
observation, $(f) has a slightly stochestic nature. The
aim of this paper is to develop expressions for the variance
caused by the random phase. Four cases will be investigated:

(1) Sine wave with random phase.

(2) Signal with independent,
components.

(3) Randomly timed periodic signal.

(4) Random phase periodic signal with additive Gaussian
noise.

random phase periodic

2 The model
Consider the following random process:
x(1)= Y X;cos(Qufit + ¢y), )]
i=1

where ¢; has uniform distribution between (0, 27). For the
moment ¢; and ¢; may be interdependent. The windowed
Fourier transform of Expn (4) is:

Xu(f)=

< Xi .
W(f)*[z ?[exp (7o) 8(f—f)texp(—jg) 8(f+ fi)]]

i=1

= X;
‘_27 [exp (j&) W(F — ) + exp (=) W(F + ).
.(5)
The spectral estimator is:
)= - F I Xul)= 3 5 0k
)T w(f) Xy )11k14T

x [exp [—j(¢: — ¢l W(f — £) W(f — fi)
+exp [~/ (i + o)) W(f = £) W(F+ 1)
+exp [/(9i + dx)) W(F+£) W(f— fi)
texp [j(&i — s W+ W+l ... (6)
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Since ¢; is random, every term of Expn (6) represents a
vector on the complex plane, rotating with the changing
of @; or ¢y, thus having zero mean, except if the exponent
is identically zero. This happens only in the Ist and 4th
terms if 7 = k. that is,

) = X?
ES( =Y —=— WHS -+ W+ 1) (7
i=14T.
(see Expn 3).

To determine the variance, we shall consider the terms
of the following expression [S(f) is real; see Expn (D]:

v {8} = EI8() — E{SUNT]
= E{$*(f)} —E*{S(N)}, .- (8)

that is, a fourfold sum must be formed from Expn (6). We
shall discuss the terms of this summation in the above listed
four special cases.

3 Sine wave with random phase

NP, & S 2
S(f)=4—T WX(f = f)+ W(f+h)

+exp (j20) W(f— ) W(f+ 1)
+exp (—72¢1) W(f— ) W(f+ i)l

. x?
= E{8(f)} + 47 (2 cos 201) W(f — f,) W(f +£).
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The relative variance is:
QWA - fO WA+ 1) 205
(WHf—f)+ WA+ '

Some commonly used windows are illustrated in Fig 1.
Expns (9) and (10) are evaluated for these windows in some
denominated cases in Figs 2 to 5. We can observe that if
the two windows, W(f — f1) and W(f+ f;) do not overlap
significantly, the variance will be small. So we have to use
large dynamics windows [e g, the so-called Flat Top (Cox,
1978 Kollar and Nagy, 1982)] to achieve small sidelobes,
and we must be careful with low-frequency sinusoidal
components: the bandlimit of the spectral window must be
smaller than the frequency of the sine wave.

A useful expression for the relative variance can be
derived in the domain of the main lobe (f ~ f) if

1
> > —
fi T
since in this domain W(f — f;) >> W(f + f,), the relative
variance may be approximated as:

2o (SN WAL
’ EXS(f)y WS- f)

exlf)= ... (10)
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4 Signal with independent, random phase periodic
components

We consider the Expn (2) signal, assuming that for
i#j, ¢; and ¢; are independent. Expn (8) can be evaluated
as in Section 3. Squaring (6) we have 16 different combi-
nations of the phases ¢;, ®x,. i, Pk, Because of the
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Fig1 Spectra of windows. (a) Spectrum of the rectangular
window. (b) Spectrum of the Hanning window. (c) Spectrum
of the Flat Top window.

rotation, the expected value is zero for many terms. It is
non-zero only if the exponent is identically zero, that is,
the four ¢-terms by pairs give zero phase.

Terms obtained from the 1st and 4th terms of Expn
(6) with the condition i, = ky, i, = k, make the E*{8(f)}
term of Expn (8). So the variance can be calculated by
carefully collecting the other zero-exponent terms. The
result consists of twofold sums, which can be rewritten
into a onefold form:

Vo(f) = var {8(£)}

oo th 2
= [Z E[W’(f-fiﬁ W2(f+ﬁ)]]
i=1 e
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+ WA R ... (12)
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Fig 2 The variance functions in the case of the rectangular
window, f; = 1.5/T
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Fig 3 The variance functions and the shape of the spectral
estimator in the case of the Hanning window, fy = 1.5/T
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Fig4 The Expn (9) variance in the case of the Flat Top
window, fy = 1.5/T

Expn (12) may be used to plot variance functions with
moderate computing effort. From Expn (12) a simple rule
may be read off: every mixed product formed from Expn
(3) sum plays a role in it. This means that the conclusions
of Section 3 concerning small leakage and

1
f;->>¥

are valid. Still in this case, a widened rule must be applied:
two terms of Expn (6) may not be closer to each other than
the width of the spectral window, e g, 2B,, in the case of
the Flat Top one (see Fig 1).

Notice that

[ i —fil < 2By, ... (13)

corresponds to the case of frequency beat, and in this light
the above result is not any more surprising, although the
appearance of the phenomenon also depends on the
window shape.

It is an interesting result that the conditon of small
variance is similar to the condition of sufficient resolution.

5 Periodic signal with random timing

Random timing means that the periodic signal can be
described as follows (disregarding the mean):

()= ¥ X;cos [2mify(t — to) + i)

i=1

= i Xjcos [i(2nfit + ¢) + Dy, ...(14)

=

where ¢, has uniform distribution between

(5

and ¢ between (0, 27). In this case the @y initial phases
are deterministic parameters. Evaluating Expn (6) we find
that instead of the terms

exp (o)
we obtain terms like
exp [j(ig + Pp)l.
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It is easy to see that, assuming ®; ¢ = 0| [exp (Jd;o=1)],
we generally overestimate the variance. So evaluating Expn
(8) we may have terms like that:

exXp [j(iilikliizik2)¢]. ..(15)

These terms, in contrast to Section 4, may be constant
even if iy, ky, i5, k, are all different, since the exponent
may be identically zero.

Therefore it is impossible to express the variance in a
simple way like Expn (12). However, in these ‘irregular’
terms, there are different W(f) terms, and small leakage
provides small variance again. So the rules of Section 4
may be applied here, and Expn (12) may give a more or
less realistic approximation of the variance, which is
expected to be dominated by the neighbouring terms
(I k—i]=1)in Expn (6).

6 Additive Gaussian noise

Since the spectral estimator of periodic signals has both
deterministic and stochastic components, the resultant
variance of the spectral estimator of the mixed signal will
not simply be the sum of the two variances, but a more
complex expression. Instead of Expn (5), in this case the
windowed Fourier transform of the signal will be the
following:

Xw(f)=[ 2 5 exp (7)) W(f = f)+ exp (—j¢y) W(f*ﬁ-)]
i=1

tE+ ks, ... (16)
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Fig5 The Expn (9) variance in the
case of the Flat Top window, f, =
5.5/T

fy

where &, and £, are independent, Gaussian random variables
with zero mean and the following variance:

T,
var {£1} = var {§,} = TSn(f)-

(see Bendat and Piersol, 1971, pp 189-191).
With a similar derivation to that of Sections 2 to 4
(see also Kollar and Nagy, 1982) we obtain:

Vin(£) = S3(f) + 25,(1) Sp () + Vo (). -~ (17

In the domain of the main lobes, it is usually the second
term of Expn (17) that dominates. This means that, in this
domain, the variance may be significantly larger than the
generally used S2( f) approximation.
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